@article{WeberArentSteffenetal.2017, author = {Weber, Tobias and Arent, Jan-Christoph and Steffen, Lucas and Balvers, Johannes M. and Duhovic, Miro}, title = {Thermal optimization of composite autoclave molds using the shift factor approach for boundary condition estimation}, series = {Journal of Composite Materials}, volume = {51}, journal = {Journal of Composite Materials}, number = {12}, publisher = {Sage}, address = {London}, issn = {1530-793X}, doi = {10.1177/0021998317699868}, pages = {1753 -- 1767}, year = {2017}, language = {en} } @article{SeifarthGrosseGrossmannetal.2017, author = {Seifarth, Volker and Grosse, Joachim O. and Grossmann, Matthias and Janke, Heinz Peter and Arndt, Patrick and Koch, Sabine and Epple, Matthias and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Mechanical induction of bi-directional orientation of primary porcine bladder smooth muscle cells in tubular fibrin-poly(vinylidene fluoride) scaffolds for ureteral and urethral repair using cyclic and focal balloon catheter stimulation}, series = {Journal of Biomaterials Applications}, volume = {32}, journal = {Journal of Biomaterials Applications}, number = {3}, publisher = {Sage}, address = {London}, issn = {1530-8022}, doi = {10.1177/0885328217723178}, pages = {321 -- 330}, year = {2017}, language = {en} } @article{PookhalilAmoabedinyTabeshetal.2016, author = {Pookhalil, Ali and Amoabediny, Ghassem and Tabesh, Hadi and Behbahani, Mehdi and Mottaghy, Khosrow}, title = {A new approach for semiempirical modeling of mechanical blood trauma}, series = {The international journal of artificial organs}, volume = {39}, journal = {The international journal of artificial organs}, number = {4}, publisher = {Sage}, address = {London}, issn = {1724-6040}, doi = {10.5301/ijao.5000474}, pages = {171 -- 177}, year = {2016}, abstract = {Purpose Two semi-empirical models were recently published, both making use of existing literature data, but each taking into account different physical phenomena that trigger hemolysis. In the first model, hemoglobin (Hb) release is described as a permeation procedure across the membrane, assuming a shear stress-dependent process (sublethal model). The second model only accounts for hemoglobin release that is caused by cell membrane breakdown, which occurs when red blood cells (RBC) undergo mechanically induced shearing for a period longer than the threshold time (nonuniform threshold model). In this paper, we introduce a model that considers the hemolysis generated by both these possible phenomena. Methods Since hemolysis can possibly be caused by permeation of hemoglobin through the RBC functional membrane as well as by release of hemoglobin from RBC membrane breakdown, our proposed model combines both these models. An experimental setup consisting of a Couette device was utilized for validation of our proposed model. Results A comparison is presented between the damage index (DI) predicted by the proposed model vs. the sublethal model vs. the nonthreshold model and experimental datasets. This comparison covers a wide range of shear stress for both human and porcine blood. An appropriate agreement between the measured DI and the DI predicted by the present model was obtained. Conclusions The semiempirical hemolysis model introduced in this paper aims for significantly enhanced conformity with experimental data. Two phenomenological outcomes become possible with the proposed approach: an estimation of the average time after which cell membrane breakdown occurs under the applied conditions, and a prediction of the ratio between the phenomena involved in hemolysis.}, language = {en} } @article{NeuJanserKhatibietal.2016, author = {Neu, Eugen and Janser, Frank and Khatibi, Akbar A. and Orifici, Adrian C.}, title = {Automated modal parameter-based anomaly detection under varying wind excitation}, series = {Structural Health Monitoring}, volume = {15}, journal = {Structural Health Monitoring}, number = {6}, publisher = {Sage}, address = {London}, issn = {1475-9217}, doi = {10.1177/1475921716665803}, pages = {1 -- 20}, year = {2016}, abstract = {Wind-induced operational variability is one of the major challenges for structural health monitoring of slender engineering structures like aircraft wings or wind turbine blades. Damage sensitive features often show an even bigger sensitivity to operational variability. In this study a composite cantilever was subjected to multiple mass configurations, velocities and angles of attack in a controlled wind tunnel environment. A small-scale impact damage was introduced to the specimen and the structural response measurements were repeated. The proposed damage detection methodology is based on automated operational modal analysis. A novel baseline preparation procedure is described that reduces the amount of user interaction to the provision of a single consistency threshold. The procedure starts with an indeterminate number of operational modal analysis identifications from a large number of datasets and returns a complete baseline matrix of natural frequencies and damping ratios that is suitable for subsequent anomaly detection. Mahalanobis distance-based anomaly detection is then applied to successfully detect the damage under varying severities of operational variability and with various degrees of knowledge about the present operational conditions. The damage detection capabilities of the proposed methodology were found to be excellent under varying velocities and angles of attack. Damage detection was less successful under joint mass and wind variability but could be significantly improved through the provision of the currently encountered operational conditions.}, language = {en} } @article{MusholtSchoendorfPfuetzneretal.2009, author = {Musholt, Petra B. and Sch{\"o}ndorf, Thomas and Pf{\"u}tzner, Andreas and Hohberg, Cloth and Kleine, Iris and Fuchs, Winfried and Hehenwarter, Silvia and Dikta, Gerhard and Kerschgens, Benedikt and Forst, Thomas}, title = {Combined Pioglitazone and Metformin Treatment Maintains the Beneficial Effect of Short-Term Insulin Infusion in Patients with Type 2 Diabetes: Results from a Pilot Study}, series = {Journal of Diabetes Science and Technology. 3 (2009), H. 6}, journal = {Journal of Diabetes Science and Technology. 3 (2009), H. 6}, publisher = {Sage Publishing}, address = {London}, isbn = {1932-2968}, pages = {1442 -- 1450}, year = {2009}, language = {en} } @article{MiciliValterOflazetal.2013, author = {Micili, Serap C. and Valter, Markus and Oflaz, Hakan and Ozogul, Candan and Linder, Peter and F{\"o}ckler, Nicole and Artmann, Gerhard and Digel, Ilya and Temiz Artmann, Ayseg{\"u}l}, title = {Optical coherence tomography : a potential tool to predict premature rupture of fetal membranes}, series = {Proceedings of the Institution of Mechanical Engineers. Part H : Journal of engineering in medicine}, volume = {Vol. 227}, journal = {Proceedings of the Institution of Mechanical Engineers. Part H : Journal of engineering in medicine}, number = {No. 4}, publisher = {Sage}, address = {London}, issn = {0046-2039 (Print) ; 2041-3033 (E-Journal)}, pages = {393 -- 401}, year = {2013}, language = {en} } @article{MalinowskiFournierHorbachetal.2022, author = {Malinowski, Daniel and Fournier, Yvan and Horbach, Andreas and Frick, Michael and Magliani, Mirko and Kalverkamp, Sebastian and Hildinger, Martin and Spillner, Jan and Behbahani, Mehdi and Hima, Flutura}, title = {Computational fluid dynamics analysis of endoluminal aortic perfusion}, series = {Perfusion}, volume = {0}, journal = {Perfusion}, number = {0}, publisher = {Sage}, address = {London}, issn = {1477-111X}, doi = {10.1177/02676591221099809}, pages = {1 -- 8}, year = {2022}, abstract = {Introduction: In peripheral percutaneous (VA) extracorporeal membrane oxygenation (ECMO) procedures the femoral arteries perfusion route has inherent disadvantages regarding poor upper body perfusion due to watershed. With the advent of new long flexible cannulas an advancement of the tip up to the ascending aorta has become feasible. To investigate the impact of such long endoluminal cannulas on upper body perfusion, a Computational Fluid Dynamics (CFD) study was performed considering different support levels and three cannula positions. Methods: An idealized literature-based- and a real patient proximal aortic geometry including an endoluminal cannula were constructed. The blood flow was considered continuous. Oxygen saturation was set to 80\% for the blood coming from the heart and to 100\% for the blood leaving the cannula. 50\% and 90\% venoarterial support levels from the total blood flow rate of 6 l/min were investigated for three different positions of the cannula in the aortic arch. Results: For both geometries, the placement of the cannula in the ascending aorta led to a superior oxygenation of all aortic blood vessels except for the left coronary artery. Cannula placements at the aortic arch and descending aorta could support supra-aortic arteries, but not the coronary arteries. All positions were able to support all branches with saturated blood at 90\% flow volume. Conclusions: In accordance with clinical observations CFD analysis reveals, that retrograde advancement of a long endoluminal cannula can considerably improve the oxygenation of the upper body and lead to oxygen saturation distributions similar to those of a central cannulation.}, language = {en} } @article{HailerWeberNevelingetal.2020, author = {Hailer, Benjamin and Weber, Tobias and Neveling, Sebastian and Dera, Samuel and Arent, Jan-Christoph and Middendorf, Peter}, title = {Development of a test device to determine the frictional behavior between honeycomb and prepreg layers under realistic manufacturing conditions}, series = {Journal of Sandwich Structures \& Materials}, journal = {Journal of Sandwich Structures \& Materials}, number = {Volume 23, Issue 7}, publisher = {Sage}, address = {London}, issn = {1530-7972}, doi = {10.1177/1099636220923986}, pages = {3017 -- 3043}, year = {2020}, abstract = {In the friction tests between honeycomb with film adhesive and prepreg, the relative displacement occurs between the film adhesive and the prepreg. The film adhesive does not shift relative to the honeycomb. This is consistent with the core crush behavior where the honeycomb moves together with the film adhesive, as can be seen in Figure 2(a). The pull-through forces of the friction measurements between honeycomb and prepreg at 1 mm deformation are plotted in Figure 17(a). While the friction at 100°C is similar to the friction at 120°C, it decreases significantly at 130°C and exhibits a minimum at 140°C. At 150°C, the friction rises again slightly and then sharply at 160°C. Since the viscosity of the M18/1 prepreg resin drops significantly before it cures [23], the minimum friction at 140°C could result from a minimum viscosity of the mixture of prepreg resin and film adhesive before the bond subsequently cures. Figure 17(b) shows the mean value curve of the friction measurements at 140°C. The error bars, which represent the standard deviation, reveal the good repeatability of the tests. The force curve is approximately horizontal between 1 mm and 2 mm. The friction then slightly rises. As with interlaminar friction measurements, this could be due to the fact that resin is removed by friction and the proportion of boundary lubrication increases. Figure 18 shows the surfaces after the friction measurement. The honeycomb cell walls are clearly visible in the film adhesive. There are areas where the film adhesive is completely removed and the carrier material of the film adhesive becomes visible. In addition, the viscosity of the resin changes as the curing progresses during the friction test. This can also affect the force-displacement curve.}, language = {en} } @article{HacklNacovKammerlohretal.2021, author = {Hackl, Michael and Nacov, Julia and Kammerlohr, Sandra and Staat, Manfred and Buess, Eduard and Leschinger, Tim and M{\"u}ller, Lars P. and Wegmann, Kilian}, title = {Intratendinous Strain Variations of the Supraspinatus Tendon Depending on Repair Technique: A Biomechanical Analysis Regarding the Cause of Medial Cuff Failure}, series = {The American Journal of Sports Medicine}, volume = {49}, journal = {The American Journal of Sports Medicine}, number = {7}, publisher = {Sage}, address = {London}, issn = {1552-3365}, doi = {10.1177/03635465211006138}, pages = {1847 -- 1853}, year = {2021}, language = {en} } @article{HacklBuessKammerlohretal.2021, author = {Hackl, Michael and Buess, Eduard and Kammerlohr, Sandra and Nacov, Julia and Staat, Manfred and Leschinger, Tim and M{\"u}ller, Lars P. and Wegmann, Kilian}, title = {A "comma sign"-directed subscapularis repair in anterosuperior rotator cuff tears yields biomechanical advantages in a cadaveric model}, series = {The american journal of sports medicine}, volume = {49}, journal = {The american journal of sports medicine}, number = {12}, publisher = {Sage}, address = {London}, issn = {1552-3365}, doi = {10.1177/03635465211031506}, pages = {3212 -- 3217}, year = {2021}, abstract = {Background: Additional stabilization of the "comma sign" in anterosuperior rotator cuff repair has been proposed to provide biomechanical benefits regarding stability of the repair. Purpose: This in vitro investigation aimed to investigate the influence of a comma sign-directed reconstruction technique for anterosuperior rotator cuff tears on the primary stability of the subscapularis tendon repair. Study Design: Controlled laboratory study. Methods: A total of 18 fresh-frozen cadaveric shoulders were used in this study. Anterosuperior rotator cuff tears (complete full-thickness tear of the supraspinatus and subscapularis tendons) were created, and supraspinatus repair was performed with a standard suture bridge technique. The subscapularis was repaired with either a (1) single-row or (2) comma sign technique. A high-resolution 3D camera system was used to analyze 3-mm and 5-mm gap formation at the subscapularis tendon-bone interface upon incremental cyclic loading. Moreover, the ultimate failure load of the repair was recorded. A Mann-Whitney test was used to assess significant differences between the 2 groups. Results: The comma sign repair withstood significantly more loading cycles than the single-row repair until 3-mm and 5-mm gap formation occurred (P≤ .047). The ultimate failure load did not reveal any significant differences when the 2 techniques were compared (P = .596). Conclusion: The results of this study show that additional stabilization of the comma sign enhanced the primary stability of subscapularis tendon repair in anterosuperior rotator cuff tears. Although this stabilization did not seem to influence the ultimate failure load, it effectively decreased the micromotion at the tendon-bone interface during cyclic loading. Clinical Relevance: The proposed technique for stabilization of the comma sign has shown superior biomechanical properties in comparison with a single-row repair and might thus improve tendon healing. Further clinical research will be necessary to determine its influence on the functional outcome.}, language = {en} }