@article{EilmannSterckWegneretal.2014, author = {Eilmann, Britta and Sterck, Frank J. and Wegner, L. and de Vries, Sven M. G. and von Arx, G. and Mohren, Godefridus M. J. and den Ouden, Jan and Sass-Klaassen, Ute G. W.}, title = {Wood structural differences between northern and southern beech provenances growing at a moderate site}, series = {Tree Physiology}, volume = {34}, journal = {Tree Physiology}, number = {8}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1758-4469 (Online)}, doi = {10.1093/treephys/tpu069}, pages = {882 -- 893}, year = {2014}, language = {en} } @article{LuisierLempiaeinenScherbichleretal.2014, author = {Luisier, Rapha{\"e}lle and Lempi{\"a}inen, Harri and Scherbichler, Nina and Braeuning, Albert and Geissler, Miriam and Dubost, Valerie and M{\"u}ller, Arne and Scheer, Nico and Chibout, Salah-Dine and Hara, Hisanori and Picard, Frank and Theil, Diethilde and Couttet, Philippe and Vitobello, Antonio and Grenet, Olivier and Grasl-Kraupp, Bettina and Ellinger-Ziegelbauer, Heidrung and Thomson, John P. and Meehan, Richard R. and Elcombe, Clifford R. and Henderson, Colin J. and Wolf, C. Roland and Schwarz, Michael and Moulin, Pierre and Terranova, Remi and Moggs, Jonathan G.}, title = {Phenobarbital Induces Cell Cycle Transcriptional Responses in Mouse Liver Humanized for Constitutive Androstane and Pregnane X Receptors}, series = {Toxicological Sciences}, volume = {139}, journal = {Toxicological Sciences}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1094-2025}, doi = {https://doi.org/10.1093/toxsci/kfu038}, pages = {501 -- 511}, year = {2014}, abstract = {The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are closely related nuclear receptors involved in drug metabolism and play important roles in the mechanism of phenobarbital (PB)-induced rodent nongenotoxic hepatocarcinogenesis. Here, we have used a humanized CAR/PXR mouse model to examine potential species differences in receptor-dependent mechanisms underlying liver tissue molecular responses to PB. Early and late transcriptomic responses to sustained PB exposure were investigated in liver tissue from double knock-out CAR and PXR (CARᴷᴼ-PXRᴷᴼ), double humanized CAR and PXR (CARʰ-PXRʰ), and wild-type C57BL/6 mice. Wild-type and CARʰ-PXRʰ mouse livers exhibited temporally and quantitatively similar transcriptional responses during 91 days of PB exposure including the sustained induction of the xenobiotic response gene Cyp2b10, the Wnt signaling inhibitor Wisp1, and noncoding RNA biomarkers from the Dlk1-Dio3 locus. Transient induction of DNA replication (Hells, Mcm6, and Esco2) and mitotic genes (Ccnb2, Cdc20, and Cdk1) and the proliferation-related nuclear antigen Mki67 were observed with peak expression occurring between 1 and 7 days PB exposure. All these transcriptional responses were absent in CARᴷᴼ-PXRᴷᴼ mouse livers and largely reversible in wild-type and CARʰ-PXRʰ mouse livers following 91 days of PB exposure and a subsequent 4-week recovery period. Furthermore, PB-mediated upregulation of the noncoding RNA Meg3, which has recently been associated with cellular pluripotency, exhibited a similar dose response and perivenous hepatocyte-specific localization in both wild-type and CARʰ-PXRʰ mice. Thus, mouse livers coexpressing human CAR and PXR support both the xenobiotic metabolizing and the proliferative transcriptional responses following exposure to PB.}, language = {en} } @article{EilmannZweifelBuchmannetal.2011, author = {Eilmann, Britta and Zweifel, Roman and Buchmann, Nina and Graf Pannatier, Elisabeth and Rigling, Andreas}, title = {Drought alters timing, quantity, and quality of wood formation in Scots pine}, series = {Journal of Experimental Botany}, volume = {62}, journal = {Journal of Experimental Botany}, number = {8}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1460-2431 (Online)}, doi = {10.1093/jxb/erq443}, pages = {2763 -- 2771}, year = {2011}, language = {en} } @article{RiglingEilmannKoechlietal.2010, author = {Rigling, Andreas and Eilmann, Britta and Koechli, Roger and Dobbertin, Matthias}, title = {Mistletoe-induced crown degradation in Scots pine in a xeric environment}, volume = {30}, number = {7}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1758-4469 (Online)}, doi = {10.1093/treephys/tpq038}, pages = {845 -- 832}, year = {2010}, abstract = {Increasing Scots pine (Pinus sylvestris L.) mortality has been recently observed in the dry inner valleys of the European Alps. Besides drought, infection with pine mistletoe (Viscum album ssp. austriacum) seems to play an important role in the mortality dynamics of Scots pines, but how mistletoes promote pine decline remains unclear. To verify whether pine mistletoe infection weakens the host via crown degradation, as observed for dwarf mistletoes, we studied the negative effects of pine mistletoe infestation on the photosynthetic tissues and branch growth of pairs of infested and non-infested branches. Pine mistletoe infection leads to crown degradation in its host by reducing the length, the radial increment, the ramification, the needle length and the number of needle years of the infested branches. This massive loss in photosynthetic tissue results in a reduction in primary production and a subsequent decrease in carbohydrate availability. The significant reduction in needle length due to mistletoe infection is an indication for a lower water and nutrient availability in infested branches. Thus, mistletoe infection might lead to a decrease in the availability of water and carbohydrates, the two most important growth factors, which are already shortened due to the chronic drought situation in the area. Therefore, pine mistletoe increases the risk of drought-induced mortality of its host when growing in a xeric environment.}, language = {en} }