@article{DigelWehlitzKayseretal.2018, author = {Digel, Ilya and Wehlitz, V. and Kayser, Peter and Figiel-Lange, A. and Bassam, R. and Rundstedt, F. von}, title = {Suspension depletion approach for exemption of infected Solanum jasminoides cells from pospiviroids}, series = {Plant Pathology}, volume = {67}, journal = {Plant Pathology}, number = {2}, publisher = {Wiley}, address = {Oxford}, issn = {1365-3059}, doi = {10.1111/ppa.12750}, pages = {358 -- 365}, year = {2018}, abstract = {Despite numerous studies, viroid elimination from infected plants remains a very challenging task. This study introduces for the first time a novel 'suspension depletion' approach for exemption of Solanum jasminoides plants from viroids. The proposed method implies initial establishment of suspension cultures of the infected plant cells. The suspended cells were then physically treated (mild thermotherapy, 33 °C), which presumably delayed the replication of the viroid. The viroid concentration in the treated biomass was monitored weekly using pospiviroid-specific PCR. After 10-12 weeks of continuous treatment, a sufficient decrease in viroid concentration was observed such that the infection became undetectable by PCR. The treated single cells then gave rise to microcolonies on a solid culture medium and the obtained viroid-negative clones were further promoted to regenerate into viroid-free plants. Three years of accumulated experimental data suggests feasibility, broad applicability, and good efficacy of the proposed approach.}, language = {en} } @article{MichauxMatternKallweit2018, author = {Michaux, F. and Mattern, P. and Kallweit, Stephan}, title = {RoboPIV: how robotics enable PIV on a large industrial scale}, series = {Measurement Science and Technology}, volume = {29}, journal = {Measurement Science and Technology}, number = {7}, publisher = {IOP}, address = {Bristol}, issn = {1361-6501}, doi = {10.1088/1361-6501/aab5c1}, pages = {074009}, year = {2018}, abstract = {This work demonstrates how the interaction between particle image velocimetry (PIV) and robotics can massively increase measurement efficiency. The interdisciplinary approach is shown using the complex example of an automated, large scale, industrial environment: a typical automotive wind tunnel application. Both the high degree of flexibility in choosing the measurement region and the complete automation of stereo PIV measurements are presented. The setup consists of a combination of three robots, individually used as a 6D traversing unit for the laser illumination system as well as for each of the two cameras. Synchronised movements in the same reference frame are realised through a master-slave setup with a single interface to the user. By integrating the interface into the standard wind tunnel management system, a single measurement plane or a predefined sequence of several planes can be requested through a single trigger event, providing the resulting vector fields within minutes. In this paper, a brief overview on the demands of large scale industrial PIV and the existing solutions is given. Afterwards, the concept of RoboPIV is introduced as a new approach. In a first step, the usability of a selection of commercially available robot arms is analysed. The challenges of pose uncertainty and importance of absolute accuracy are demonstrated through comparative measurements, explaining the individual pros and cons of the analysed systems. Subsequently, the advantage of integrating RoboPIV directly into the existing wind tunnel management system is shown on basis of a typical measurement sequence. In a final step, a practical measurement procedure, including post-processing, is given by using real data and results. Ultimately, the benefits of high automation are demonstrated, leading to a drastic reduction in necessary measurement time compared to non-automated systems, thus massively increasing the efficiency of PIV measurements.}, language = {en} } @article{DruckenmuellerGuentherElbers2018, author = {Druckenm{\"u}ller, Katharina and G{\"u}nther, Klaus and Elbers, Gereon}, title = {Near-infrared spectroscopy (NIRS) as a tool to monitor exhaust air from poultry operations}, series = {Science of the Total Environment}, volume = {630}, journal = {Science of the Total Environment}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2018.02.072}, pages = {536 -- 543}, year = {2018}, abstract = {Intensive poultry operation systems emit a considerable volume of inorganic and organic matter in the surrounding environment. Monitoring cleaning properties of exhaust air cleaning systems and to detect small but significant changes in emission characteristics during a fattening cycle is important for both emission and fattening process control. In the present study, we evaluated the potential of near-infrared spectroscopy (NIRS) combined with chemometric techniques as a monitoring tool of exhaust air from poultry operation systems. To generate a high-quality data set for evaluation, the exhaust air of two poultry houses was sampled by applying state-of-the-art filter sampling protocols. The two stables were identical except for one crucial difference, the presence or absence of an exhaust air cleaning system. In total, twenty-one exhaust air samples were collected at the two sites to monitor spectral differences caused by the cleaning device, and to follow changes in exhaust air characteristics during a fattening period. The total dust load was analyzed by gravimetric determination and included as a response variable in multivariate data analysis. The filter samples were directly measured with NIR spectroscopy. Principal component analysis (PCA), linear discriminant analysis (LDA), and factor analysis (FA) were effective in classifying the NIR exhaust air spectra according to fattening day and origin. The results indicate that the dust load and the composition of exhaust air (inorganic or organic matter) substantially influence the NIR spectral patterns. In conclusion, NIR spectroscopy as a tool is a promising and very rapid way to detect differences between exhaust air samples based on still not clearly defined circumstances triggered during a fattening period and the availability of an exhaust air cleaning system.}, language = {en} } @article{SunAltherrPeietal.2018, author = {Sun, Hui and Altherr, Lena and Pei, Ji and Pelz, Peter F. and Yuan, Shouqi}, title = {Optimal booster station design and operation under uncertain load}, series = {Applied Mechanics and Materials}, volume = {885}, journal = {Applied Mechanics and Materials}, publisher = {Trans Tech Publications}, address = {B{\"a}ch}, issn = {1662-7482}, doi = {10.4028/www.scientific.net/AMM.885.102}, pages = {102 -- 115}, year = {2018}, abstract = {Given industrial applications, the costs for the operation and maintenance of a pump system typically far exceed its purchase price. For finding an optimal pump configuration which minimizes not only investment, but life-cycle costs, methods like Technical Operations Research which is based on Mixed-Integer Programming can be applied. However, during the planning phase, the designer is often faced with uncertain input data, e.g. future load demands can only be estimated. In this work, we deal with this uncertainty by developing a chance-constrained two-stage (CCTS) stochastic program. The design and operation of a booster station working under uncertain load demand are optimized to minimize total cost including purchase price, operation cost incurred by energy consumption and penalty cost resulting from water shortage. We find optimized system layouts using a sample average approximation (SAA) algorithm, and analyze the results for different risk levels of water shortage. By adjusting the risk level, the costs and performance range of the system can be balanced, and thus the system's resilience can be engineered}, language = {en} } @article{AltherrBroetzDietrichetal.2018, author = {Altherr, Lena and Br{\"o}tz, Nicolas and Dietrich, Ingo and Gally, Tristan and Geßner, Felix and Kloberdanz, Hermann and Leise, Philipp and Pelz, Peter Franz and Schlemmer, Pia and Schmitt, Andreas}, title = {Resilience in mechanical engineering - a concept for controlling uncertainty during design, production and usage phase of load-carrying structures}, series = {Applied Mechanics and Materials}, volume = {885}, journal = {Applied Mechanics and Materials}, publisher = {Trans Tech Publications}, address = {B{\"a}ch}, isbn = {1662-7482}, doi = {10.4028/www.scientific.net/AMM.885.187}, pages = {187 -- 198}, year = {2018}, abstract = {Resilience as a concept has found its way into different disciplines to describe the ability of an individual or system to withstand and adapt to changes in its environment. In this paper, we provide an overview of the concept in different communities and extend it to the area of mechanical engineering. Furthermore, we present metrics to measure resilience in technical systems and illustrate them by applying them to load-carrying structures. By giving application examples from the Collaborative Research Centre (CRC) 805, we show how the concept of resilience can be used to control uncertainty during different stages of product life.}, language = {en} } @article{AltherrJoggerstLeiseetal.2018, author = {Altherr, Lena and Joggerst, Laura and Leise, Philipp and Pfetsch, Marc E. and Schmitt, Andreas and Wendt, Janine}, title = {On obligations in the development process of resilient systems with algorithmic design methods}, series = {Applied Mechanics and Materials}, volume = {885}, journal = {Applied Mechanics and Materials}, number = {885}, publisher = {Trans Tech Publications}, address = {B{\"a}ch}, isbn = {1662-7482}, doi = {10.4028/www.scientific.net/AMM.885.240}, pages = {240 -- 252}, year = {2018}, abstract = {Advanced computational methods are needed both for the design of large systems and to compute high accuracy solutions. Such methods are efficient in computation, but the validation of results is very complex, and highly skilled auditors are needed to verify them. We investigate legal questions concerning obligations in the development phase, especially for technical systems developed using advanced methods. In particular, we consider methods of resilient and robust optimization. With these techniques, high performance solutions can be found, despite a high variety of input parameters. However, given the novelty of these methods, it is uncertain whether legal obligations are being met. The aim of this paper is to discuss if and how the choice of a specific computational method affects the developer's product liability. The review of legal obligations in this paper is based on German law and focuses on the requirements that must be met during the design and development process.}, language = {en} } @article{AltherrLeisePfetschetal.2018, author = {Altherr, Lena and Leise, Philipp and Pfetsch, Marc E. and Schmitt, Andreas}, title = {Algorithmic design and resilience assessment of energy efficient high-rise water supply systems}, series = {Applied Mechanics and Materials}, volume = {885}, journal = {Applied Mechanics and Materials}, publisher = {Trans Tech Publications}, address = {B{\"a}ch}, issn = {1662-7482}, doi = {10.4028/www.scientific.net/AMM.885.211}, pages = {211 -- 223}, year = {2018}, abstract = {High-rise water supply systems provide water flow and suitable pressure in all levels of tall buildings. To design such state-of-the-art systems, the consideration of energy efficiency and the anticipation of component failures are mandatory. In this paper, we use Mixed-Integer Nonlinear Programming to compute an optimal placement of pipes and pumps, as well as an optimal control strategy.Moreover, we consider the resilience of the system to pump failures. A resilient system is able to fulfill a predefined minimum functionality even though components fail or are restricted in their normal usage. We present models to measure and optimize the resilience. To demonstrate our approach, we design and analyze an optimal resilient decentralized water supply system inspired by a real-life hotel building.}, language = {en} } @article{deBloisdeZangerPaulssenetal.2018, author = {de Blois, Eric and de Zanger, Rory M. S. and Paulßen, Elisabeth and Sze Chan, Ho and Breeman, Wouter A. P.}, title = {Semi-automated system for concentrating 68Ga-eluate to obtain high molar and volume concentration of 68Ga-Radiopharmaca for preclinical applications}, series = {Nuclear Medicine and Biology}, volume = {64-65}, journal = {Nuclear Medicine and Biology}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.nucmedbio.2018.06.006}, pages = {16 -- 21}, year = {2018}, abstract = {68Ga-radiopharmaceuticals are common in the field of Nuclear Medicine to visualize receptor-mediated processes. In contrast to straightforward labeling procedures for clinical applications, preclinical in vitro and in vivo applications are hampered for reasons like e.g. volume restriction, activity concentration, molar activity and osmolality. Therefore, we developed a semiautomatic system specifically to overcome these problems. A difficulty appeared unexpectedly, as intrinsic trace metals derived from eluate (Zn, Fe and Cu) are concentrated as well in amounts that influence radiochemical yield and thus lower molar activity.}, language = {en} } @article{FingerBraunBil2018, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Impact of electric propulsion technology and mission requirements on the performance of VTOL UAVs}, series = {CEAS Aeronautical Journal}, volume = {10}, journal = {CEAS Aeronautical Journal}, number = {3}, publisher = {Springer}, issn = {1869-5582 print}, doi = {10.1007/s13272-018-0352-x}, pages = {843}, year = {2018}, abstract = {One of the engineering challenges in aviation is the design of transitioning vertical take-off and landing (VTOL) aircraft. Thrust-borne flight implies a higher mass fraction of the propulsion system, as well as much increased energy consumption in the take-off and landing phases. This mass increase is typically higher for aircraft with a separate lift propulsion system than for aircraft that use the cruise propulsion system to support a dedicated lift system. However, for a cost-benefit trade study, it is necessary to quantify the impact the VTOL requirement and propulsion configuration has on aircraft mass and size. For this reason, sizing studies are conducted. This paper explores the impact of considering a supplemental electric propulsion system for achieving hovering flight. Key variables in this study, apart from the lift system configuration, are the rotor disk loading and hover flight time, as well as the electrical systems technology level for both batteries and motors. Payload and endurance are typically used as the measures of merit for unmanned aircraft that carry electro-optical sensors, and therefore the analysis focuses on these particular parameters.}, language = {en} }