@inproceedings{DarvenizaFlisowskiKernetal.2002, author = {Darveniza, M. and Flisowski, Z. and Kern, Alexander and Landers, E.-U. and LoPiparo, G. and Mazzetti, C. and Rousseau, A. and Sherlock, J.}, title = {Application problems of the probabilistic approach to the assessment of risk for structures and services}, year = {2002}, abstract = {The paper deals with the development of the probabilistic approach to the assessment of risk due to lightning. Sources of damage, types of damage and types of loss are defined and, accordingly, the procedure for risk analysis and the way of assessment of different risk components is proposed. The way to evaluate the influence of different protection measures (lightning protection system; shielding of structure, cables and equipment; routing of internal wiring; surge protective device) in reducing such probabilities is considered. The paper has been prepared within the framework of the activity of IEC TC81-WG9/CLC TC81-WG4 directed to prepare the draft IEC 62305-2 Risk Management, in cooperation with the Secretary of IEC/CLC TC81.}, language = {en} } @inproceedings{Kern2003, author = {Kern, Alexander}, title = {Absch{\"a}tzung des Blitzschadensrisikos f{\"u}r bauliche Anlagen - Die neue Bestimmung DIN V VDE V 0185 Teil 2 : 2002 - Allgemeines, Absch{\"a}tzungsverfahren, Berechnungsbeispiele}, year = {2003}, abstract = {Ein vorausschauendes Risikomanagement beinhaltet, Risiken f{\"u}r das Unternehmen zu kalkulieren. Es liefert Entscheidungsgrundlagen, um diese Risiken zu begrenzen und es macht transparent, welche Risiken sinnvollerweise {\"u}ber Versicherungen abgedeckt werden sollten. Beim Versicherungsmanagement ist jedoch zu bedenken, dass zur Erreichung bestimmter Ziele Versicherungen nicht immer geeignet sind (z.B. Erhaltung der Lieferf{\"a}higkeit). Eintrittswahrscheinlichkeiten bestimmter Risiken lassen sich durch Versicherungen nicht ver{\"a}ndern. Bei Unternehmen, die mit umfangreichen elektronischen Einrichtungen produzieren oder Dienstleistungen erbringen (und das sind heutzutage wohl die meisten), muss auch das Risiko durch Blitzeinwirkungen besondere Ber{\"u}cksichtigung finden. Dabei ist zu beachten, dass der Schaden aufgrund der Nicht-Verf{\"u}gbarkeit der elektronischen Einrichtungen und damit der Produktion bzw. der Dienstleistung und ggf. der Verlust von Daten den Hardware-Schaden an der betroffenen Anlage oft bei weitem {\"u}bersteigt. Im Blitzschutz gewinnt innovatives Denken in Schadensrisiken langsam an Bedeutung. Risikoanalysen haben die Objektivierung und Quantifizierung der Gef{\"a}hrdung von baulichen Anlagen und ihrer Inhalte durch direkte und indirekte Blitzeinschl{\"a}ge zum Ziel. Seinen Niederschlag hat dieses neue Denken in der neuen deutschen Vornorm DIN V 0185-2 VDE V 0185 Teil 2 [1] gefunden. Die hier vorgegebene Risikoanalyse gew{\"a}hrleistet, dass ein f{\"u}r alle Beteiligten nachvollziehbares Blitzschutz-Konzept erstellt werden kann, das technisch und wirtschaftlich optimiert ist, d.h. bei m{\"o}glichst geringem Aufwand den notwendigen Schutz gew{\"a}hrleisten kann. Die sich aus der Risikoanalyse ergebenden Schutzmaßnahmen sind dann in den weiteren Normenteilen der neuen Reihe VDE V 0185 [2, 3] detailliert beschrieben.}, language = {de} } @article{Kern2003, author = {Kern, Alexander}, title = {Risikomanagement f{\"u}r den Blitzschutz - Absch{\"a}tzung des Blitzschadensrisikos nach der neuen Vornorm VDE V 0185 Teil 2 : 2002}, year = {2003}, abstract = {Ein vorausschauendes Risikomanagement beinhaltet, Risiken zu kalkulieren. Es liefert Entscheidungsgrundlagen, um diese Risiken zu begrenzen und es macht transparent,welche Risiken sinnvoll {\"u}ber Versicherungen abgedeckt werden sollten. Bei Unternehmen, die mit umfangreichen elektronischenEinrichtungen produzieren oder Dienstleistungen erbringen (und das sind heutzutage wohl die meisten), muss auch das Risiko durch Blitzeinwirkungen besondere Ber{\"u}cksichtigung finden. Dabei ist zu beachten, dass der Schaden aufgrund der Nichtverf{\"u}gbarkeit der elektronischen Einrichtungen und damit derProduktion bzw. der Dienstleistung und ggf. der Verlust von Daten den Hardwareschaden an der betroffenen Anlage oft bei weitem {\"u}bersteigt.}, language = {de} } @inproceedings{Kern2002, author = {Kern, Alexander}, title = {Risikomanagement : Absch{\"a}tzung des Schadensrisikos f{\"u}r bauliche Anlagen - Die neue Vornorm DIN V VDE V 0185 Teil 2 : 2002}, year = {2002}, abstract = {Alle Unternehmen sind vielf{\"a}ltigen Risiken ausgesetzt, die Finanz- und Betriebsbereiche einschließlich Dienstleistungen betreffen k{\"o}nnen. Die Firmen m{\"u}ssen {\"u}blicherweise Risiken eingehen, um im Wettbewerb bestehen zu k{\"o}nnen. Entscheidend ist, dass man sich {\"u}ber die Risiken bewusst ist, diese einsch{\"a}tzen und kontrollieren kann. Falsche Einsch{\"a}tzungen, Vers{\"a}umnisse und Fehlentscheidungen k{\"o}nnen empfindliche finanzielle Sch{\"a}den bis hin zum Totalverlust nach sich ziehen. Ein effektives Risikomanagement ist heute als wichtiger Sicherheitsfaktor anzusehen und sollte zur strategischen Unternehmensf{\"u}hrung geh{\"o}ren. Ein vorausschauendes Risikomanagement beinhaltet, Risiken f{\"u}r das Unternehmen zu kalkulieren. Es liefert Entscheidungsgrundlagen, um diese Risiken zu begrenzen und es macht transparent, welche Risiken sinnvollerweise {\"u}ber Versicherungen abgedeckt werden sollten. Beim Versicherungsmanagement ist jedoch zu bedenken, dass zur Erreichung bestimmter Ziele Versicherungen nicht geeignet sind (z.B. Erhaltung der Lieferf{\"a}higkeit). Eintrittswahrscheinlichkeiten bestimmter Risiken lassen sich durch Versicherungen nicht ver{\"a}ndern. Bei Unternehmen, die mit umfangreichen elektronischen Einrichtungen produzieren oder Dienstleistungen erbringen (und das sind heutzutage wohl die meisten), muss auch das Risiko durch Blitzeinwirkungen besondere Ber{\"u}cksichtigung finden. Dabei ist zu beachten, dass der Schaden aufgrund der Nicht-Verf{\"u}gbarkeit der elektronischen Einrichtungen und damit der Produktion bzw. der Dienstleistung und ggf. der Verlust von Daten den Hardware-Schaden an der betroffenen Anlage oft bei weitem {\"u}bersteigt. Im Blitzschutz gewinnt innovatives Denken in Schadensrisiken langsam an Bedeutung. Risikoanalysen haben die Objektivierung und Quantifizierung der Gef{\"a}hrdung von baulichen Anlagen und ihrer Inhalte durch direkte und indirekte Blitzeinschl{\"a}ge zum Ziel. Seinen Niederschlag hat dieses neue Denken in der neuen deutschen Norm DIN V 0185-2 VDE V 0185 Teil 2 gefunden. Die hier vorgegebene Risikoanalyse gew{\"a}hrleistet, dass ein f{\"u}r alle Beteiligten nachvollziehbares Blitzschutz-Konzept erstellt werden kann, das technisch und wirtschaftlich optimiert ist, d.h. bei m{\"o}glichst geringem Aufwand den notwendigen Schutz gew{\"a}hrleisten kann. Die sich aus der Risikoanalyse ergebenden Schutzmaßnahmen sind dann in den weiteren Normenteilen der neuen Reihe VDE V 0185 detailliert beschrieben.}, language = {de} } @inproceedings{Kern2003, author = {Kern, Alexander}, title = {Risikomanagement nach DIN V 0185-2 VDE V 0185 Teil 2: 2002-11 - Einige Beispiele und erste Erfahrungen}, year = {2003}, abstract = {Die neue Vornorm VDE V 0185 Teil 2 „Risikomanagement: Absch{\"a}tzung des Schadensrisikos f{\"u}r bauliche Anlagen" [1] ist seit November 2002 g{\"u}ltig. Sie erm{\"o}glicht nicht nur die Ermittlung der Schutzklasse eines Blitzschutzsystems, sondern auch die Untersuchung zur Notwendigkeit anderer Schutzmaßnahmen gegen Blitzeinwirkungen ({\"U}berspannungsschutzger{\"a}te in Unterverteilern und/oder an Endger{\"a}ten, Schirmung des Geb{\"a}udes und/oder interner R{\"a}ume, Potentialsteuerung, Brandmelde- und Feuerl{\"o}scheinrichtungen, etc.) nach objektiven Kriterien und damit in einer f{\"u}r alle Beteiligten grunds{\"a}tzlich nachvollziehbaren Art und Weise. Dass eine solche Analyse rel. komplex sein muss und der intensiven Besch{\"a}ftigung bedarf, ist deshalb nicht verwunderlich. Die Komplexit{\"a}t des Verfahrens sollte allerdings nicht dazu f{\"u}hren, die Vornorm als Ganzes abzulehnen. Die Vornorm beruht auf dem Stand der Diskussion im internationalen Normengremium IEC TC81 WG9 Ende des Jahres 2000. Integriert wurden einige nationale Besonderheiten, die aus Sicht des zust{\"a}ndigen Normenkomitees DKE K251 erforderlich erschienen. In Deutschland konnten und k{\"o}nnen nun erste breite Erfahrungen in der Anwendung dieser Risikoanalyse gesammelt werden; in anderen L{\"a}ndern ist dies noch nicht m{\"o}glich. Diese Erfahrungen k{\"o}nnen dann, nach Diskussion im nationalen Rahmen, in die internationale Normenarbeit eingebracht werden. Im folgenden Beitrag sollen einige, seit Erscheinen der Vornorm oft wiederkehrende Fragen dargestellt und L{\"o}sungsvorschl{\"a}ge vorgestellt werden. Dabei wird auch auf die Tendenzen im internationalen Normengremium IEC TC81 WG9 eingegangen, d.h. auf den aktuellen Entwurf zur IEC 62305-2 [3]. Die L{\"o}sungsvorschl{\"a}ge werden begr{\"u}ndet, sind allerdings weitestgehend subjektive Meinung des Autors. F{\"u}r {\"u}bliche bauliche Anlagen ist die Anwendung der Vornorm rel. einfach m{\"o}glich. Auch f{\"u}r spezielle F{\"a}lle k{\"o}nnen die darin festgelegten Verfahren herangezogen werden; allerdings sind dann einige weiterf{\"u}hrende {\"U}berlegungen notwendig, die der Planer von Blitzschutzsystemen durchf{\"u}hren muss. Anhand zweier Beispiele soll die Anwendung der VDE V 0185 Teil 2 auf solche speziellen F{\"a}lle dargestellt werden.}, language = {de} } @inproceedings{KernHeidlerSeeversetal.2004, author = {Kern, Alexander and Heidler, Fridolin and Seevers, M. and Zischank, Wolfgang J.}, title = {Magnetic Fields and Induced Voltages in case of a Direct Strike - Comparison of Results obtained from Measurements at a Scaled Building to those of IEC 62305-4}, isbn = {0304-3886}, year = {2004}, abstract = {In the paper the results obtained from experiments at a modelled reinforced building in case of a direct lightning strike are compared with calculations. The comparison includes peak values of the magnetic field Hmax, its derivative (dH/dt)max and of induced voltages umax in typical cable routings. The experiments are performed at a 1:6 scaled building and the results are extrapolated using the similarity relations theory. The calculations are based on the approximate formulae given in IEC 62305-4 and have to be supplemented by a rough estimation of the additional shielding effect of a second reinforcement layer. The comparison shows, that the measured peak values of the magnetic field and its derivative are mostly lower than the calculated. The induced voltages are in good agreement. Hence, calculations of the induced voltages based on IEC 62305-4 are a good method for lightning protection studies of buildings, where the reinforcement is used as a grid-like electromagnetic shield.}, subject = {Blitz}, language = {en} } @article{KernKrichel2003, author = {Kern, Alexander and Krichel, Frank}, title = {{\"U}berlegungen zum Blitzschutzkonzept f{\"u}r regenerative Energieanlagen}, year = {2003}, abstract = {Dem Blitzschutz von Anlagen der regenerativen Energien kommt in Zukunft eine steigende Bedeutung zu. Dabei ist es notwendig zu ber{\"u}cksichtigen, dass die Schutzmaßnahmen technisch/wirtschaftlich ausgewogen sind. Erbauer, Besitzer oder Benutzer von netzautarken Hybridanlagen haben zu entscheiden, ob die Anlage einen Schutz braucht oder nicht. Um diese Entscheidung zu f{\"a}llen, ist eine Risikoanalyse als erster Schritt sinnvoll. Diese muss dabei die f{\"u}r die Hybridanlage relevanten Schadenarten und spezifischen Parameter, Werte und Randbedingungen mit einbeziehen. Dazu ist die Hilfe eines Blitzschutzexperten sehr hilfreich.}, subject = {Alternative Energiequelle}, language = {de} } @inproceedings{KernKrichel2002, author = {Kern, Alexander and Krichel, Frank}, title = {Considerations about the lightning protection system of mains independent renewable energy hybrid-systems - practical experiences}, year = {2002}, abstract = {In the paper a lightning protection design concept for renewable energy hybrid-systems without power mains connection is described. Based on a risk analysis protection measures against direct strikes and overvoltages are shown in an overview. The design concept is realized exemplarily for the hybrid-system VATALI on the Greek island Crete. VATALI, not lightning protected at that time, was a victim of a lightning strike in the year 2000 causing destructions and damages of some mechanical and electrical components with costs of approx. 60.000 €. The hardware costs for the protection measures were about 15.000 €: about 50\% of the costs are due to protection measures against direct strikes, 50\% are due to overvoltage protection.}, language = {en} } @inproceedings{KernKrichelMueller2001, author = {Kern, Alexander and Krichel, Frank and M{\"u}ller, Klaus-Peter}, title = {Lightning protection design of a renewable energy hybrid-system without power mains connection}, year = {2001}, abstract = {In the year 2000 a direct lightning strike to the hybridsystem without power mains connection VATALI on the Greek island Crete results in the destruction and damage of some mechanical and electrical components. The hybrid-system VATALI was not lightning protected at that time. The hardware damage costs are approx. 60,000 €. The exposed site of the hybrid-system on top of a mountain was and still is the reason for a high risk of lightning strikes. Also in the future further lightning strikes have to be taken into consideration. In the paper a fundamental lightning protection design concept for renewable energy hybrid-systems without power mains connection and protection measures against direct strikes and overvoltages are shown in detail. The design concept was realized exemplarily for the hybrid-system VATALI. The hardware costs for the protection measures were about 15,000 €. About 50\% of the costs are due to protection measures against direct strikes, 50\% are due to overvoltage protection. Future extensions, new installations, or modifications have to be included into the lightning protection design concept of the hybrid-system.}, language = {en} } @inproceedings{KernKraemer2003, author = {Kern, Alexander and Kr{\"a}mer, Heinz-Josef}, title = {Blitzschutzkonzept f{\"u}r eine bauliche Anlage mit Stahlkonstruktion und metallenen W{\"a}nden}, year = {2003}, abstract = {Bauliche Anlagen mit Stahlkonstruktionen (bzw. auch Stahlbetonskelett- Konstruktionen) und metallenen W{\"a}nden sind bereits in sehr großer Zahl errichtet. Dazu geh{\"o}ren kleinere bis gr{\"o}ßere Lagerhallen ebenso wie Einkaufszentren. Sie zeichnen sich durch große Flexibilit{\"a}t, einfache Planung, kurze Bauzeit und rel. geringe Kosten aus. Auch in der nahen Zukunft ist deshalb mit Planung und Errichtung weiterer solcher baulicher Anlagen zu rechnen. Abh{\"a}ngig von der Nutzung der Hallen sind auch mehr oder weniger umfangreiche elektrische und elektronische Systeme vorhanden, die wichtige Funktionen sicherstellen m{\"u}ssen. Der Blitzschutz f{\"u}r diese baulichen Anlagen sollte sich also nicht nur im „klassischen" Geb{\"a}ude-Blitzschutz nach DIN V 0185-3 VDE V 0185 Teil 3 [1] ersch{\"o}pfen; ein Erg{\"a}nzung hin zu einem sinnvollen Grundschutz der elektrischen und elektronischen Systeme nach DIN V 0185-4 VDE V 0185 Teil 4 [2] ist anzuraten. Im folgenden Beitrag wird ein Konzept vorgestellt, mit dem ein hochwertiger Blitzschutz sowohl der baulichen Anlage und der darin befindlichen Personen, als auch der elektrischen und elektronischen Systeme verwirklicht werden kann. Insbesondere bei großfl{\"a}chigen Hallen stellen sich dabei besondere Anforderungen. Das Konzept und die zugeh{\"o}rigen blitzschutz-technischen Maßnahmen k{\"o}nnen drei Hauptbereichen zugeordnet werden: - {\"A}ußerer Blitzschutz; - Innerer Blitzschutz; - weitergehende besondere Maßnahmen. Das Konzept sowie die Maßnahmen werden allgemein beschrieben und teilweise anhand einer ausgef{\"u}hrten Anlage mit Fotos beispielhaft dokumentiert.}, language = {de} }