@incollection{MuellerAltherrAholaetal.2018, author = {M{\"u}ller, Tim M. and Altherr, Lena and Ahola, Marja and Schabel, Samuel and Pelz, Peter F.}, title = {Optimizing pressure screen systems in paper recycling: optimal system layout, component selection and operation}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-18499-5}, doi = {10.1007/978-3-030-18500-8_44}, pages = {355 -- 361}, year = {2018}, abstract = {Around 60\% of the paper worldwide is made from recovered paper. Especially adhesive contaminants, so called stickies, reduce paper quality. To remove stickies but at the same time keep as many valuable fibers as possible, multi-stage screening systems with several interconnected pressure screens are used. When planning such systems, suitable screens have to be selected and their interconnection as well as operational parameters have to be defined considering multiple conflicting objectives. In this contribution, we present a Mixed-Integer Nonlinear Program to optimize system layout, component selection and operation to find a suitable trade-off between output quality and yield.}, language = {en} } @incollection{StengerAltherrMuelleretal.2018, author = {Stenger, David and Altherr, Lena and M{\"u}ller, Tankred and Pelz, Peter F.}, title = {Product family design optimization using model-based engineering techniques}, series = {Operations Research Proceedings 2017}, booktitle = {Operations Research Proceedings 2017}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-89919-0}, doi = {10.1007/978-3-319-89920-6_66}, pages = {495 -- 502}, year = {2018}, abstract = {Highly competitive markets paired with tremendous production volumes demand particularly cost efficient products. The usage of common parts and modules across product families can potentially reduce production costs. Yet, increasing commonality typically results in overdesign of individual products. Multi domain virtual prototyping enables designers to evaluate costs and technical feasibility of different single product designs at reasonable computational effort in early design phases. However, savings by platform commonality are hard to quantify and require detailed knowledge of e.g. the production process and the supply chain. Therefore, we present and evaluate a multi-objective metamodel-based optimization algorithm which enables designers to explore the trade-off between high commonality and cost optimal design of single products.}, language = {en} } @incollection{AltherrDoerigEdereretal.2017, author = {Altherr, Lena and D{\"o}rig, Bastian and Ederer, Thorsten and Pelz, Peter Franz and Pfetsch, Marc and Wolf, Jan}, title = {A mixed-integer nonlinear program for the design of gearboxes}, series = {Operations Research Proceedings 2016}, booktitle = {Operations Research Proceedings 2016}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-55701-4}, doi = {10.1007/978-3-319-55702-1_31}, pages = {227 -- 233}, year = {2017}, abstract = {Gearboxes are mechanical transmission systems that provide speed and torque conversions from a rotating power source. Being a central element of the drive train, they are relevant for the efficiency and durability of motor vehicles. In this work, we present a new approach for gearbox design: Modeling the design problem as a mixed-integer nonlinear program (MINLP) allows us to create gearbox designs from scratch for arbitrary requirements and—given enough time—to compute provably globally optimal designs for a given objective. We show how different degrees of freedom influence the runtime and present an exemplary solution.}, language = {en} } @incollection{LeiseAltherrPelz2018, author = {Leise, Philipp and Altherr, Lena and Pelz, Peter F.}, title = {Energy-Efficient design of a water supply system for skyscrapers by mixed-integer nonlinear programming}, series = {Operations Research Proceedings 2017}, booktitle = {Operations Research Proceedings 2017}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-89919-0}, doi = {10.1007/978-3-319-89920-6_63}, year = {2018}, abstract = {The energy-efficiency of technical systems can be improved by a systematic design approach. Technical Operations Research (TOR) employs methods known from Operations Research to find a global optimal layout and operation strategy of technical systems. We show the practical usage of this approach by the systematic design of a decentralized water supply system for skyscrapers. All possible network options and operation strategies are modeled by a Mixed-Integer Nonlinear Program. We present the optimal system found by our approach and highlight the energy savings compared to a conventional system design.}, language = {en} } @incollection{AltherrEdererLorenzetal.2016, author = {Altherr, Lena and Ederer, Thorsten and Lorenz, Ulf and Pelz, Peter F. and P{\"o}ttgen, Philipp}, title = {Designing a feedback control system via mixed-integer programming}, series = {Operations Research Proceedings 2014: Selected Papers of the Annual International Conference of the German Operations Research}, booktitle = {Operations Research Proceedings 2014: Selected Papers of the Annual International Conference of the German Operations Research}, editor = {L{\"u}bbecke, Marco E. and Koster, Arie and Letmathe, Peter and Madlener, Reihard and Preis, Britta and Walther, Grit}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-28695-2}, doi = {10.1007/978-3-319-28697-6_18}, pages = {121 -- 127}, year = {2016}, abstract = {Pure analytical or experimental methods can only find a control strategy for technical systems with a fixed setup. In former contributions we presented an approach that simultaneously finds the optimal topology and the optimal open-loop control of a system via Mixed Integer Linear Programming (MILP). In order to extend this approach by a closed-loop control we present a Mixed Integer Program for a time discretized tank level control. This model is the basis for an extension by combinatorial decisions and thus for the variation of the network topology. Furthermore, one is able to appraise feasible solutions using the global optimality gap.}, language = {en} } @incollection{AltherrLeise2021, author = {Altherr, Lena and Leise, Philipp}, title = {Resilience as a concept for mastering uncertainty}, series = {Mastering Uncertainty in Mechanical Engineering}, booktitle = {Mastering Uncertainty in Mechanical Engineering}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-78353-2}, doi = {10.1007/978-3-030-78354-9}, pages = {412 -- 417}, year = {2021}, language = {en} } @incollection{AltherrLeisePfetschetal.2021, author = {Altherr, Lena and Leise, Philipp and Pfetsch, Marc E. and Schmitt, Andreas}, title = {Optimal design of resilient technical systems on the example of water supply systems}, series = {Mastering Uncertainty in Mechanical Engineering}, booktitle = {Mastering Uncertainty in Mechanical Engineering}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-78356-3}, pages = {429 -- 433}, year = {2021}, language = {en} } @incollection{LeiseAltherr2021, author = {Leise, Philipp and Altherr, Lena}, title = {Experimental evaluation of resilience metrics in a fluid system}, series = {Mastering Uncertainty in Mechanical Engineering}, booktitle = {Mastering Uncertainty in Mechanical Engineering}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-78356-3}, pages = {442 -- 447}, year = {2021}, language = {en} } @incollection{CzarneckiHongSchmitzetal.2021, author = {Czarnecki, Christian and Hong, Chin-Gi and Schmitz, Manfred and Dietze, Christian}, title = {Enabling digital transformation through cognitive robotic process automation at Deutsche Telekom Services Europe}, series = {Digitalization Cases Vol. 2 : Mastering digital transformation for global business}, booktitle = {Digitalization Cases Vol. 2 : Mastering digital transformation for global business}, editor = {Urbach, Nils and R{\"o}glinger, Maximilian and Kautz, Karlheinz and Alias, Rose Alinda and Saunders, Carol and Wiener, Martin}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-80002-4 (Print)}, doi = {10.1007/978-3-030-80003-1}, pages = {123 -- 138}, year = {2021}, abstract = {Subject of this case is Deutsche Telekom Services Europe (DTSE), a service center for administrative processes. Due to the high volume of repetitive tasks (e.g., 100k manual uploads of offer documents into SAP per year), automation was identified as an important strategic target with a high management attention and commitment. DTSE has to work with various backend application systems without any possibility to change those systems. Furthermore, the complexity of administrative processes differed. When it comes to the transfer of unstructured data (e.g., offer documents) to structured data (e.g., MS Excel files), further cognitive technologies were needed.}, language = {en} } @incollection{CzarneckiFettke2021, author = {Czarnecki, Christian and Fettke, Peter}, title = {Robotic process automation : Positioning, structuring, and framing the work}, series = {Robotic process automation : Management, technology, applications}, booktitle = {Robotic process automation : Management, technology, applications}, editor = {Czarnecki, Christian and Fettke, Peter}, publisher = {De Gruyter}, address = {Oldenbourg}, isbn = {978-3-11-067668-6 (Print)}, doi = {10.1515/9783110676693-202}, pages = {3 -- 24}, year = {2021}, abstract = {Robotic process automation (RPA) has attracted increasing attention in research and practice. This chapter positions, structures, and frames the topic as an introduction to this book. RPA is understood as a broad concept that comprises a variety of concrete solutions. From a management perspective RPA offers an innovative approach for realizing automation potentials, whereas from a technical perspective the implementation based on software products and the impact of artificial intelligence (AI) and machine learning (ML) are relevant. RPA is industry-independent and can be used, for example, in finance, telecommunications, and the public sector. With respect to RPA this chapter discusses definitions, related approaches, a structuring framework, a research framework, and an inside as well as outside architectural view. Furthermore, it provides an overview of the book combined with short summaries of each chapter.}, language = {en} }