@inproceedings{ButenwegBursiNardinetal.2021, author = {Butenweg, Christoph and Bursi, Oreste S. and Nardin, Chiara and Lanese, Igor and Pavese, Alberto and Marinković, Marko and Paolacci, Fabrizio and Quinci, Gianluca}, title = {Experimental investigation on the seismic performance of a multi-component system for major-hazard industrial facilities}, series = {Conference Proceedings: Pressure Vessels \& Piping Conference Vol.5}, booktitle = {Conference Proceedings: Pressure Vessels \& Piping Conference Vol.5}, publisher = {American Society of Mechanical Engineers (ASME)}, address = {New York}, isbn = {9780791885352}, doi = {10.1115/PVP2021-61696}, pages = {8 Seiten}, year = {2021}, abstract = {Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi-Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behaviour of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behaviour of the test structure and of its relative several installations is investigated. Furthermore, both process components and primary structure interactions are considered and analyzed. Several PGA-scaled artificial ground motions are applied to study the seismic response at different levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the experimental setup of the investigated structure and installations, selected measurement data and describes the obtained damage. Furthermore, important findings for the definition of performance limits, the effectiveness of floor response spectra in industrial facilities will be presented and discussed.}, language = {en} } @inproceedings{BalaskasHoffmeisterButenwegetal.2021, author = {Balaskas, Georgios and Hoffmeister, Benno and Butenweg, Christoph and Pilz, Marco and Bauer, Anna}, title = {Earthquake early warning and response system based on intelligent seismic and monitoring sensors embedded in a communication platform and coupled with BIM models}, series = {Proceedings of COMPDYN 2021}, booktitle = {Proceedings of COMPDYN 2021}, editor = {Papadrakakis, Manolis and Fragiadakis, Michalis}, publisher = {National Technical University of Athens}, address = {Athen}, isbn = {978-618-85072-5-8}, issn = {2623-3347}, doi = {10.7712/120121.8539.18855}, pages = {987 -- 998}, year = {2021}, abstract = {This paper describes the concept of an innovative, interdisciplinary, user-oriented earthquake warning and rapid response system coupled with a structural health monitoring system (SHM), capable to detect structural damages in real time. The novel system is based on interconnected decentralized seismic and structural health monitoring sensors. It is developed and will be exemplarily applied on critical infrastructures in Lower Rhine Region, in particular on a road bridge and within a chemical industrial facility. A communication network is responsible to exchange information between sensors and forward warnings and status reports about infrastructures'health condition to the concerned recipients (e.g., facility operators, local authorities). Safety measures such as emergency shutdowns are activated to mitigate structural damages and damage propagation. Local monitoring systems of the infrastructures are integrated in BIM models. The visualization of sensor data and the graphic representation of the detected damages provide spatial content to sensors data and serve as a useful and effective tool for the decision-making processes after an earthquake in the region under consideration.}, language = {en} } @inproceedings{MilkovaButenwegDumovaJovanoska2021, author = {Milkova, Kristina and Butenweg, Christoph and Dumova-Jovanoska, Elena}, title = {Region-sensitive comprehensive procedure for determination of seismic fragility curves}, series = {1st Croatian Conference on Earthquake Engineering 1CroCEE}, booktitle = {1st Croatian Conference on Earthquake Engineering 1CroCEE}, publisher = {University of Zagreb}, address = {Zagreb}, doi = {10.5592/CO/1CroCEE.2021.158}, pages = {121 -- 128}, year = {2021}, abstract = {Seismic vulnerability estimation of existing structures is unquestionably interesting topic of high priority, particularly after earthquake events. Having in mind the vast number of old masonry buildings in North Macedonia serving as public institutions, it is evident that the structural assessment of these buildings is an issue of great importance. In this paper, a comprehensive methodology for the development of seismic fragility curves of existing masonry buildings is presented. A scenario - based method that incorporates the knowledge of the tectonic style of the considered region, the active fault characterization, the earth crust model and the historical seismicity (determined via the Neo Deterministic approach) is used for calculation of the necessary response spectra. The capacity of the investigated masonry buildings has been determined by using nonlinear static analysis. MINEA software (SDA Engineering) is used for verification of the structural safety of the structures Performance point, obtained from the intersection of the capacity of the building and the spectra used, is selected as a response parameter. The thresholds of the spectral displacement are obtained by splitting the capacity curve into five parts, utilizing empirical formulas which are represented as a function of yield displacement and ultimate displacement. As a result, four levels of damage limit states are determined. A maximum likelihood estimation procedure for the process of fragility curves determination is noted as a final step in the proposed procedure. As a result, region specific series of vulnerability curves for structures are defined.}, language = {en} } @inproceedings{Butenweg2021, author = {Butenweg, Christoph}, title = {Integrated approach for monitoring and management of buildings with digital building models and modern sensor technologies}, series = {Proceedings of the International Conference Civil Engineering 2021 - Achievements and Visions}, booktitle = {Proceedings of the International Conference Civil Engineering 2021 - Achievements and Visions}, editor = {Kuzmanović, Vladan and Ignjatović, Ivan}, publisher = {University of Belgrade}, address = {Belgrade}, pages = {67 -- 75}, year = {2021}, abstract = {Nowadays modern high-performance buildings and facilities are equipped with monitoring systems and sensors to control building characteristics like energy consumption, temperature pattern and structural safety. The visualization and interpretation of sensor data is typically based on simple spreadsheets and non-standardized user-oriented solutions, which makes it difficult for building owners, facility managers and decision-makers to evaluate and understand the data. The solution of this problem in the future are integrated BIM-Sensor approaches which allow the generation of BIM models incorporating all relevant information of monitoring systems. These approaches support both the dynamic visualization of key structural performance parameters, the effective long-term management of sensor data based on BIM and provide a user-friendly interface to communicate with various stakeholders. A major benefit for the end user is the use of the BIM software architecture, which is the future standard anyway. In the following, the application of the integrated BIM-Sensor approach is illustrated for a typical industrial facility as a part of an early warning and rapid response system for earthquake events currently developed in the research project "ROBUST" with financial support by the German Federal Ministry for Economic Affairs and Energy (BMWI).}, language = {en} } @inproceedings{ButenwegMarinkovićPaveseetal.2021, author = {Butenweg, Christoph and Marinković, Marko and Pavese, Alberto and Lanese, Igor and Hoffmeister, Benno and Pinkawa, Marius and Vulcu, Mihai-Cristian and Bursi, Oreste and Nardin, Chiara and Paolacci, Fabrizio and Quinci, Gianluca and Fragiadakis, Michalis and Weber, Felix and Huber, Peter and Renault, Philippe and G{\"u}ndel, Max and Dyke, Shirley and Ciucci, M. and Marino, A.}, title = {Seismic performance of multi-component systems in special risk industrial facilities}, series = {Proceedings of the seventeenth world conference on earthquake engineering}, booktitle = {Proceedings of the seventeenth world conference on earthquake engineering}, year = {2021}, abstract = {Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi- Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behavior of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behavior of the test structure and installations is investigated with and without base isolation. Furthermore, both firmly anchored and isolated components are taken into account to compare their dynamic behavior and interactions with each other. Artificial and synthetic ground motions are applied to study the seismic response at different PGA levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the numerical simulations to calibrate the tests on the prototype, the experimental setup of the investigated structure and installations, selected measurement data and finally describes preliminary experimental results.}, language = {en} } @inproceedings{NeumannAdamBackesetal.2021, author = {Neumann, Hannah and Adam, Mario and Backes, Klaus and B{\"o}rner, Martin and Clees, Tanja and Doetsch, Christian and Glaeser, Susanne and Herrmann, Ulf and May, Johanna and Rosenthal, Florian and Sauer, Dirk Uwe and Stadler, Ingo}, title = {Development of open educational resources for renewable energy and the energy transition process}, series = {ISES SWC 2021}, booktitle = {ISES SWC 2021}, publisher = {International Solar Energy Society}, address = {Freiburg}, doi = {10.18086/swc.2021.47.03}, pages = {6 Seiten}, year = {2021}, abstract = {The dissemination of knowledge about renewable energies is understood as a social task with the highest topicality. The transfer of teaching content on renewable energies into digital open educational resources offers the opportunity to significantly accelerate the implementation of the energy transition. Thus, in the here presented project six German universities create open educational resources for the energy transition. These materials are available to the public on the internet under a free license. So far there has been no publicly accessible, editable media that cover entire learning units about renewable energies extensively and in high technical quality. Thus, in this project, the content that remains up-to-date for a longer period is appropriately prepared in terms of media didactics. The materials enable lecturers to provide students with in-depth training about technologies for the energy transition. In a particular way, the created material is also suitable for making the general public knowledgeable about the energy transition with scientifically based material.}, language = {en} } @inproceedings{MertensBraunerBaieretal.2022, author = {Mertens, Alexander and Brauner, Philipp and Baier, Ralph and Brillowski, Florian and Dammers, Hannah and van Dyck, Marc and Kong, Iris and K{\"o}nigs, Peter and Kordtomeikel, Frauke and Liehner, Gian Luca and P{\"u}tz, Sebastian and Rodermann, Niklas and Schaar, Anne Kathrin and Steuer-Dankert, Linda and Vervier, Luisa and Wlecke, Shari and Gries, Thomas and Leicht-Scholten, Carmen and Nagel, Saskia K. and Piller, Frank T. and Schuh, G{\"u}nther and Ziefle, Martina and Nitsch, Verena}, title = {Modelling Human Factors in Cyber Physical Production Systems by the Integration of Human Digital Shadows}, series = {Modellierung 2022 Satellite Events}, booktitle = {Modellierung 2022 Satellite Events}, editor = {Michael, Judith and Pfeiffer, J{\´e}r{\^o}me and Wortmann, Andreas}, publisher = {GI Gesellschaft f{\"u}r Informatik}, address = {Bonn}, doi = {10.18420/modellierung2022ws-018}, pages = {147 -- 149}, year = {2022}, abstract = {The future of industrial manufacturing and production will increasingly manifest in the form of cyber-physical production systems. Here, Digital Shadows will act as mediators between the physical and digital world to model and operationalize the interactions and relationships between different entities in production systems. Until now, the associated concepts have been primarily pursued and implemented from a technocentric perspective, in which human actors play a subordinate role, if they are considered at all. This paper outlines an anthropocentric approach that explicitly considers the characteristics, behavior, and traits and states of human actors in socio-technical production systems. For this purpose, we discuss the potentials and the expected challenges and threats of creating and using Human Digital Shadows in production.}, language = {en} } @inproceedings{Butenweg2022, author = {Butenweg, Christoph}, title = {Seismic design and evaluation of industrial facilities}, series = {The Third European Conference on Earthquake Engineering and Seismology}, booktitle = {The Third European Conference on Earthquake Engineering and Seismology}, editor = {Vacareanu, Radu and Ionescu, Constantin}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-15103-3}, issn = {2524-342X}, doi = {10.1007/978-3-031-15104-0}, pages = {449 -- 464}, year = {2022}, abstract = {Industrial facilities must be thoroughly designed to withstand seismic actions as they exhibit an increased loss potential due to the possibly wideranging damage consequences and the valuable process engineering equipment. Past earthquakes showed the social and political consequences of seismic damage to industrial facilities and sensitized the population and politicians worldwide for the possible hazard emanating from industrial facilities. However, a holistic approach for the seismic design of industrial facilities can presently neither be found in national nor in international standards. The introduction of EN 1998-4 of the new generation of Eurocode 8 will improve the normative situation with specific seismic design rules for silos, tanks and pipelines and secondary process components. The article presents essential aspects of the seismic design of industrial facilities based on the new generation of Eurocode 8 using the example of tank structures and secondary process components. The interaction effects of the process components with the primary structure are illustrated by means of the experimental results of a shaking table test of a three story moment resisting steel frame with different process components. Finally, an integrated approach of digital plant models based on building information modelling (BIM) and structural health monitoring (SHM) is presented, which provides not only a reliable decision-making basis for operation, maintenance and repair but also an excellent tool for rapid assessment of seismic damage.}, language = {en} } @inproceedings{MorandiButenwegBreisetal.2022, author = {Morandi, Paolo and Butenweg, Christoph and Breis, Khaled and Beyer, Katrin and Magenes, Guido}, title = {Behaviour factor q for the seismic design of URM buildings}, series = {The Third European Conference on Earthquake Engineering and Seismology}, booktitle = {The Third European Conference on Earthquake Engineering and Seismology}, editor = {Arion, Christian and Scupin, Alexandra and Ţigănescu, Alexandru}, isbn = {978-973-100-533-1}, pages = {1184 -- 1194}, year = {2022}, abstract = {Recent earthquakes showed that low-rise URM buildings following codecompliant seismic design and details behaved in general very well without substantial damages. Although advances in simulation tools make nonlinear calculation methods more readily accessible to designers, linear analyses will still be the standard design method for years to come. The present paper aims to improve the linear seismic design method by providing a proper definition of the q-factor of URM buildings. Values of q-factors are derived for low-rise URM buildings with rigid diaphragms, with reference to modern structural configurations realized in low to moderate seismic areas of Italy and Germany. The behaviour factor components for deformation and energy dissipation capacity and for overstrength due to the redistribution of forces are derived by means of pushover analyses. As a result of the investigations, rationally based values of the behaviour factor q to be used in linear analyses in the range of 2.0 to 3.0 are proposed.}, language = {en} } @inproceedings{MilijašŠakićMarinkovićetal.2022, author = {Milijaš, Aleksa and Šakić, Bogdan and Marinković, Marko and Butenweg, Christoph and Gams, Matija and Klinkel, Sven}, title = {Effects of prior in-plane damage on out-of-plane response of masonry infills with openings}, series = {The Third European Conference on Earthquake Engineering and Seismology}, booktitle = {The Third European Conference on Earthquake Engineering and Seismology}, editor = {Arion, Cristian and Scupin, Alexandra and Ţigănescu, Alexandru}, isbn = {978-973-100-533-1}, pages = {2747 -- 2756}, year = {2022}, abstract = {Masonry infill walls are the most traditional enclosure system that is still widely used in RC frame buildings all over the world, particularly in seismic active regions. Although infill walls are usually neglected in seismic design, during an earthquake event they are subjected to in-plane and out-of-plane forces that can act separately or simultaneously. Since observations of damage to buildings after recent earthquakes showed detrimental effects of in-plane and out-of-plane load interaction on infill walls, the number of studies that focus on influence of in-plane damage on out-of-plane response has significantly increased. However, most of the xperimental campaigns have considered only solid infills and there is a lack of combined in-plane and out-of-plane experimental tests on masonry infills with openings, although windows and doors strongly affect seismic performance. In this paper, two types of experimental tests on infills with window openings are presented. The first is a pure out-of-plane test and the second one is a sequential in-plane and out-of-plane test aimed at investigating the effects of existing in-plane damage on outof-plane response. Additionally, findings from two tests with similar load procedure that were carried out on fully infilled RC frames in the scope of the same project are used for comparison. Test results clearly show that window opening increased vulnerability of infills to combined seismic actions and that prevention of damage in infills with openings is of the utmost importance for seismic safety.}, language = {en} }