@inproceedings{UlmerBraunChengetal.2022, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Usage of digital twins for gamification applications in manufacturing}, series = {Procedia CIRP Leading manufacturing systems transformation - Proceedings of the 55th CIRP Conference on Manufacturing Systems 2022}, volume = {107}, booktitle = {Procedia CIRP Leading manufacturing systems transformation - Proceedings of the 55th CIRP Conference on Manufacturing Systems 2022}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8271}, doi = {10.1016/j.procir.2022.05.044}, pages = {675 -- 680}, year = {2022}, abstract = {Gamification applications are on the rise in the manufacturing sector to customize working scenarios, offer user-specific feedback, and provide personalized learning offerings. Commonly, different sensors are integrated into work environments to track workers' actions. Game elements are selected according to the work task and users' preferences. However, implementing gamified workplaces remains challenging as different data sources must be established, evaluated, and connected. Developers often require information from several areas of the companies to offer meaningful gamification strategies for their employees. Moreover, work environments and the associated support systems are usually not flexible enough to adapt to personal needs. Digital twins are one primary possibility to create a uniform data approach that can provide semantic information to gamification applications. Frequently, several digital twins have to interact with each other to provide information about the workplace, the manufacturing process, and the knowledge of the employees. This research aims to create an overview of existing digital twin approaches for digital support systems and presents a concept to use digital twins for gamified support and training systems. The concept is based upon the Reference Architecture Industry 4.0 (RAMI 4.0) and includes information about the whole life cycle of the assets. It is applied to an existing gamified training system and evaluated in the Industry 4.0 model factory by an example of a handle mounting.}, language = {en} } @inproceedings{DannenSchindelePruemmeretal.2022, author = {Dannen, Tammo and Schindele, Benedikt and Pr{\"u}mmer, Marcel and Arntz, Kristian and Bergs, Thomas}, title = {Methodology for the self-optimizing determination of additive manufacturing process eligibility and optimization potentials in toolmaking}, series = {Procedia CIRP Leading manufacturing systems transformation - Proceedings of the 55th CIRP Conference on Manufacturing Systems 2022}, volume = {107}, booktitle = {Procedia CIRP Leading manufacturing systems transformation - Proceedings of the 55th CIRP Conference on Manufacturing Systems 2022}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8271}, doi = {10.1016/j.procir.2022.05.188}, pages = {1539 -- 1544}, year = {2022}, abstract = {Additive Manufacturing (AM) of metallic workpieces faces a continuously rising technological relevance and market size. Producing complex or highly strained unique workpieces is a significant field of application, making AM highly relevant for tool components. Its successful economic application requires systematic workpiece based decisions and optimizations. Considering geometric and technological requirements as well as the necessary post-processing makes deciding effortful and requires in-depth knowledge. As design is usually adjusted to established manufacturing, associated technological and strategic potentials are often neglected. To embed AM in a future proof industrial environment, software-based self-learning tools are necessary. Integrated into production planning, they enable companies to unlock the potentials of AM efficiently. This paper presents an appropriate methodology for the analysis of process-specific AM-eligibility and optimization potential, added up by concrete optimization proposals. For an integrated workpiece characterization, proven methods are enlarged by tooling-specific figures. The first stage of the approach specifies the model's initialization. A learning set of tooling components is described using the developed key figure system. Based on this, a set of applicable rules for workpiece-specific result determination is generated through clustering and expert evaluation. Within the following application stage, strategic orientation is quantified and workpieces of interest are described using the developed key figures. Subsequently, the retrieved information is used for automatically generating specific recommendations relying on the generated ruleset of stage one. Finally, actual experiences regarding the recommendations are gathered within stage three. Statistic learning transfers those to the generated ruleset leading to a continuously deepening knowledge base. This process enables a steady improvement in output quality.}, language = {en} } @inproceedings{MorandiButenwegBreisetal.2022, author = {Morandi, Paolo and Butenweg, Christoph and Breis, Khaled and Beyer, Katrin and Magenes, Guido}, title = {Behaviour factor q for the seismic design of URM buildings}, series = {The Third European Conference on Earthquake Engineering and Seismology}, booktitle = {The Third European Conference on Earthquake Engineering and Seismology}, editor = {Arion, Christian and Scupin, Alexandra and Ţigănescu, Alexandru}, isbn = {978-973-100-533-1}, pages = {1184 -- 1194}, year = {2022}, abstract = {Recent earthquakes showed that low-rise URM buildings following codecompliant seismic design and details behaved in general very well without substantial damages. Although advances in simulation tools make nonlinear calculation methods more readily accessible to designers, linear analyses will still be the standard design method for years to come. The present paper aims to improve the linear seismic design method by providing a proper definition of the q-factor of URM buildings. Values of q-factors are derived for low-rise URM buildings with rigid diaphragms, with reference to modern structural configurations realized in low to moderate seismic areas of Italy and Germany. The behaviour factor components for deformation and energy dissipation capacity and for overstrength due to the redistribution of forces are derived by means of pushover analyses. As a result of the investigations, rationally based values of the behaviour factor q to be used in linear analyses in the range of 2.0 to 3.0 are proposed.}, language = {en} } @inproceedings{MilijašŠakićMarinkovićetal.2022, author = {Milijaš, Aleksa and Šakić, Bogdan and Marinković, Marko and Butenweg, Christoph and Gams, Matija and Klinkel, Sven}, title = {Effects of prior in-plane damage on out-of-plane response of masonry infills with openings}, series = {The Third European Conference on Earthquake Engineering and Seismology}, booktitle = {The Third European Conference on Earthquake Engineering and Seismology}, editor = {Arion, Cristian and Scupin, Alexandra and Ţigănescu, Alexandru}, isbn = {978-973-100-533-1}, pages = {2747 -- 2756}, year = {2022}, abstract = {Masonry infill walls are the most traditional enclosure system that is still widely used in RC frame buildings all over the world, particularly in seismic active regions. Although infill walls are usually neglected in seismic design, during an earthquake event they are subjected to in-plane and out-of-plane forces that can act separately or simultaneously. Since observations of damage to buildings after recent earthquakes showed detrimental effects of in-plane and out-of-plane load interaction on infill walls, the number of studies that focus on influence of in-plane damage on out-of-plane response has significantly increased. However, most of the xperimental campaigns have considered only solid infills and there is a lack of combined in-plane and out-of-plane experimental tests on masonry infills with openings, although windows and doors strongly affect seismic performance. In this paper, two types of experimental tests on infills with window openings are presented. The first is a pure out-of-plane test and the second one is a sequential in-plane and out-of-plane test aimed at investigating the effects of existing in-plane damage on outof-plane response. Additionally, findings from two tests with similar load procedure that were carried out on fully infilled RC frames in the scope of the same project are used for comparison. Test results clearly show that window opening increased vulnerability of infills to combined seismic actions and that prevention of damage in infills with openings is of the utmost importance for seismic safety.}, language = {en} } @inproceedings{RigaPitilakisButenwegetal.2022, author = {Riga, Evi and Pitilakis, Kyriazis and Butenweg, Christoph and Apostolaki, Stefania and Karatzetzou, Anna}, title = {Investigating the impact of the new European Seismic Hazard Model ESHM20 on the seismic design and safety control of industrial facilities}, series = {The Third European Conference on Earthquake Engineering and Seismology}, booktitle = {The Third European Conference on Earthquake Engineering and Seismology}, editor = {Arion, Cristian and Scupin, Alexandra and Ţigănescu, Alexandru}, isbn = {978-973-100-533-1}, pages = {3261 -- 3270}, year = {2022}, abstract = {The seismic performance and safety of major European industrial facilities has a global interest for Europe, its citizens and economy. A potential major disaster at an industrial site could affect several countries, probably far beyond the country where it is located. However, the seismic design and safety assessment of these facilities is practically based on national, often outdated seismic hazard assessment studies, due to many reasons, including the absence of a reliable, commonly developed seismic hazard model for whole Europe. This important gap is no more existing, as the 2020 European Seismic Hazard Model ESHM20 was released in December 2021. In this paper we investigate the expected impact of the adoption of ESHM20 on the seismic demand for industrial facilities, through the comparison of the ESHM20 probabilistic hazard at the sites where industrial facilities are located with the respective national and European regulations. The goal of this preliminary work in the framework of Working Group 13 of the European Association for Earthquake Engineering (EAEE), is to identify potential inadequacies in the design and safety control of existing industrial facilities and to highlight the expected impact of the adoption of the new European Seismic Hazard Model on the design of new industrial facilities and the safety assessment of existing ones.}, language = {en} } @inproceedings{PuetzBaierBrauneretal.2022, author = {P{\"u}tz, Sebastian and Baier, Ralph and Brauner, Philipp and Brillowski, Florian and Dammers, Hannah and Liehner, Luca and Mertens, Alexander and Rodemann, Niklas and Schneider, Sebastian and Schollemann, Alexander and Steuer-Dankert, Linda and Vervier, Luisa and Gries, Thomas and Leicht-Scholten, Carmen and Nagel, Saskia K. and Piller, Frank T. and Schuh, G{\"u}nther and Ziefle, Martina and Nitsch, Verena}, title = {An interdisciplinary view on humane interfaces for digital shadows in the internet of production}, series = {2022 15th International Conference on Human System Interaction (HSI)}, booktitle = {2022 15th International Conference on Human System Interaction (HSI)}, publisher = {IEEE}, isbn = {978-1-6654-6823-7 (Print)}, issn = {2158-2246 (Print)}, doi = {10.1109/HSI55341.2022.9869467}, pages = {8 Seiten}, year = {2022}, abstract = {Digital shadows play a central role for the next generation industrial internet, also known as Internet of Production (IoP). However, prior research has not considered systematically how human actors interact with digital shadows, shaping their potential for success. To address this research gap, we assembled an interdisciplinary team of authors from diverse areas of human-centered research to propose and discuss design and research recommendations for the implementation of industrial user interfaces for digital shadows, as they are currently conceptualized for the IoP. Based on the four use cases of decision support systems, knowledge sharing in global production networks, human-robot collaboration, and monitoring employee workload, we derive recommendations for interface design and enhancing workers' capabilities. This analysis is extended by introducing requirements from the higher-level perspectives of governance and organization.}, language = {en} } @inproceedings{WeldenSeverinsPoghossianetal.2022, author = {Welden, Melanie and Severins, Robin and Poghossian, Arshak and Wege, Christina and Siegert, Petra and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Studying the immobilization of acetoin reductase with Tobacco mosaic virus particles on capacitive field-effect sensors}, series = {2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN)}, booktitle = {2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN)}, publisher = {IEEE}, isbn = {978-1-6654-5860-3 (Online)}, doi = {10.1109/ISOEN54820.2022.9789657}, pages = {4 Seiten}, year = {2022}, abstract = {A capacitive electrolyte-insulator-semiconductor (EISCAP) biosensor modified with Tobacco mosaic virus (TMV) particles for the detection of acetoin is presented. The enzyme acetoin reductase (AR) was immobilized on the surface of the EISCAP using TMV particles as nanoscaffolds. The study focused on the optimization of the TMV-assisted AR immobilization on the Ta 2 O 5 -gate EISCAP surface. The TMV-assisted acetoin EISCAPs were electrochemically characterized by means of leakage-current, capacitance-voltage, and constant-capacitance measurements. The TMV-modified transducer surface was studied via scanning electron microscopy.}, language = {en} } @inproceedings{Gaigall2022, author = {Gaigall, Daniel}, title = {On Consistent Hypothesis Testing In General Hilbert Spaces}, series = {Proceedings of the 4th International Conference on Statistics: Theory and Applications (ICSTA'22)}, booktitle = {Proceedings of the 4th International Conference on Statistics: Theory and Applications (ICSTA'22)}, publisher = {Avestia Publishing}, address = {Orl{\´e}ans, Kanada}, doi = {10.11159/icsta22.157}, pages = {Paper No. 157}, year = {2022}, abstract = {Inference on the basis of high-dimensional and functional data are two topics which are discussed frequently in the current statistical literature. A possibility to include both topics in a single approach is working on a very general space for the underlying observations, such as a separable Hilbert space. We propose a general method for consistently hypothesis testing on the basis of random variables with values in separable Hilbert spaces. We avoid concerns with the curse of dimensionality due to a projection idea. We apply well-known test statistics from nonparametric inference to the projected data and integrate over all projections from a specific set and with respect to suitable probability measures. In contrast to classical methods, which are applicable for real-valued random variables or random vectors of dimensions lower than the sample size, the tests can be applied to random vectors of dimensions larger than the sample size or even to functional and high-dimensional data. In general, resampling procedures such as bootstrap or permutation are suitable to determine critical values. The idea can be extended to the case of incomplete observations. Moreover, we develop an efficient algorithm for implementing the method. Examples are given for testing goodness-of-fit in a one-sample situation in [1] or for testing marginal homogeneity on the basis of a paired sample in [2]. Here, the test statistics in use can be seen as generalizations of the well-known Cram{\´e}rvon-Mises test statistics in the one-sample and two-samples case. The treatment of other testing problems is possible as well. By using the theory of U-statistics, for instance, asymptotic null distributions of the test statistics are obtained as the sample size tends to infinity. Standard continuity assumptions ensure the asymptotic exactness of the tests under the null hypothesis and that the tests detect any alternative in the limit. Simulation studies demonstrate size and power of the tests in the finite sample case, confirm the theoretical findings, and are used for the comparison with concurring procedures. A possible application of the general approach is inference for stock market returns, also in high data frequencies. In the field of empirical finance, statistical inference of stock market prices usually takes place on the basis of related log-returns as data. In the classical models for stock prices, i.e., the exponential L{\´e}vy model, Black-Scholes model, and Merton model, properties such as independence and stationarity of the increments ensure an independent and identically structure of the data. Specific trends during certain periods of the stock price processes can cause complications in this regard. In fact, our approach can compensate those effects by the treatment of the log-returns as random vectors or even as functional data.}, language = {en} } @inproceedings{TranTrinhDaoetal.2022, author = {Tran, Ngoc Trinh and Trinh, Tu Luc and Dao, Ngoc Tien and Giap, Van Tan and Truong, Manh Khuyen and Dinh, Thuy Ha and Staat, Manfred}, title = {Limit and shakedown analysis of structures under random strength}, series = {Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training}, booktitle = {Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training}, publisher = {Nha xuat ban Khoa hoc tu nhien va Cong nghe (Verlag Naturwissenschaft und Technik)}, address = {Hanoi}, isbn = {978-604-357-084-7}, pages = {510 -- 518}, year = {2022}, abstract = {Direct methods comprising limit and shakedown analysis is a branch of computational mechanics. It plays a significant role in mechanical and civil engineering design. The concept of direct method aims to determinate the ultimate load bearing capacity of structures beyond the elastic range. For practical problems, the direct methods lead to nonlinear convex optimization problems with a large number of variables and onstraints. If strength and loading are random quantities, the problem of shakedown analysis is considered as stochastic programming. This paper presents a method so called chance constrained programming, an effective method of stochastic programming, to solve shakedown analysis problem under random condition of strength. In this our investigation, the loading is deterministic, the strength is distributed as normal or lognormal variables.}, language = {en} } @inproceedings{Maurer2022, author = {Maurer, Florian}, title = {Framework to provide a simulative comparison of different energy market designs}, series = {Energy Informatics}, volume = {5}, booktitle = {Energy Informatics}, number = {2, Article number: 12}, publisher = {Springer Nature}, issn = {2520-8942}, doi = {10.1186/s42162-022-00215-6}, pages = {18 -- 20}, year = {2022}, abstract = {Useful market simulations are key to the evaluation of diferent market designs existing of multiple market mechanisms or rules. Yet a simulation framework which has a comparison of diferent market mechanisms in mind was not found. The need to create an objective view on different sets of market rules while investigating meaningful agent strategies concludes that such a simulation framework is needed to advance the research on this subject. An overview of diferent existing market simulation models is given which also shows the research gap and the missing capabilities of those systems. Finally, a methodology is outlined how a novel market simulation which can answer the research questions can be developed.}, language = {en} }