@inproceedings{GehlerOberBloebaumDachwald2009, author = {Gehler, M. and Ober-Bl{\"o}baum, S. and Dachwald, Bernd}, title = {Application of discrete mechanics and optimal control to spacecraft in non-keplerian motion around small solar system bodies}, series = {Procceedings of the 60th International Astronautical Congress}, booktitle = {Procceedings of the 60th International Astronautical Congress}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-161567908-9}, pages = {1360 -- 1371}, year = {2009}, abstract = {Prolonged operations close to small solar system bodies require a sophisticated control logic to minimize propellant mass and maximize operational efficiency. A control logic based on Discrete Mechanics and Optimal Control (DMOC) is proposed and applied to both conventionally propelled and solar sail spacecraft operating at an arbitrarily shaped asteroid in the class of Itokawa. As an example, stand-off inertial hovering is considered, recently identified as a challenging part of the Marco Polo mission. The approach is easily extended to stand-off orbits. We show that DMOC is applicable to spacecraft control at small objects, in particular with regard to the fact that the changes in gravity are exploited by the algorithm to optimally control the spacecraft position. Furthermore, we provide some remarks on promising developments.}, language = {en} } @inproceedings{DigelDachwaldArtmannetal.2009, author = {Digel, Ilya and Dachwald, Bernd and Artmann, Gerhard and Linder, Peter and Funke, O.}, title = {A concept of a probe for particle analysis and life detection in icy environments}, year = {2009}, abstract = {A melting probe equipped with autofluorescence-based detection system combined with a light scattering unit, and, optionally, with a microarray chip would be ideally suited to probe icy environments like Europa's ice layer as well as the polar ice layers of Earth and Mars for recent and extinct live.}, subject = {Sonde}, language = {en} } @inproceedings{FunkeEschRoosen2009, author = {Funke, Harald and Esch, Thomas and Roosen, Peter}, title = {Using motor gasoline for aircrafts - coping with growing bio-fuel-caused risks by understanding cause-effect relationship}, series = {Fuels 2009 : mineral oil based and alternative fuels ; 7th international colloquium ; January 14 - 15, 2009}, booktitle = {Fuels 2009 : mineral oil based and alternative fuels ; 7th international colloquium ; January 14 - 15, 2009}, editor = {Bartz, Wilfried J.}, publisher = {Technische Akademie Esslingen (TAE)}, address = {Ostfildern}, isbn = {978-3-924813-75-8}, pages = {237 -- 244}, year = {2009}, abstract = {The utilisation of vehicle-oriented gasoline in general aviation is very desirable for both ecological and economical reasons, as well as for general considerations of availability. As of today vehicle fuels may be used if the respective engine and cell are certified for such an operation. For older planes a supplementary technical certificate is provided for gasoline mixtures with less than 1 \% v/v ethanol only, though. Larger admixtures of ethanol may lead to sudden engine malfunction and should be considered as considerable security risks. Major problems are caused by the partially ethanol non-withstanding materials, a necessarily changed stochiometric adjustment of the engine for varying ethanol shares and the tendency for phase separation in the presence of absorbed water. The concepts of the flexible fuel vehicles are only partially applicable in the view of air security.}, language = {en} } @inproceedings{KemperHellenbroichEsch2009, author = {Kemper, Hans and Hellenbroich, Gereon and Esch, Thomas}, title = {Concept of an innovative passenger-car hybrid drive for European driving conditions}, series = {Hybrid vehicles and energy management : 6th symposium ; 18th and 19th February 2009, Stadthalle Braunschweig}, booktitle = {Hybrid vehicles and energy management : 6th symposium ; 18th and 19th February 2009, Stadthalle Braunschweig}, publisher = {Gesamtzentrum f{\"u}r Verkehr (GZVB)}, address = {Braunschweig}, isbn = {978-3-937655-20-8}, pages = {264 -- 287}, year = {2009}, abstract = {The downsizing of spark ignition engines in conjunction with turbocharging is considered to be a promising method for reducing CO₂ emissions. Using this concept, FEV has developed a new, highly efficient drivetrain to demonstrate fuel consumption reduction and drivability in a vehicle based on the Ford Focus ST. The newly designed 1.8L turbocharged gasoline engine incorporates infinitely variable intake and outlet control timing and direct fuel injection utilizing piezo injectors centrally located. In addition, this engine uses a prototype FEV engine control system, with software that was developed and adapted entirely by FEV. The vehicle features a 160 kW engine with a maximum mean effective pressure of 22.4 bar and 34 \% savings in simulated fuel consumption. During the first stage, a new electrohydraulically actuated hybrid transmission with seven forward gears and one reverse gear and a single dry starting clutch will be integrated. The electric motor of the hybrid is directly connected to the gear set of the transmission. Utilizing the special gear set layout, the electric motor can provide boost during a change of gears, so that there is no interruption in traction. Therefore, the transmission system combines the advantages of a double clutch controlled gear change (gear change without an interruption in traction) with the efficient, cost-effective design of an automated manual transmission system. Additionally, the transmission provides a purely electric drive system and the operation of an air-conditioning compressor during the engine stop phases. One other alternative is through the use of CAI (Controlled Auto Ignition), which incorporates a process developed by FEV for controlled compression ignition.}, language = {en} } @inproceedings{HavermannSeilerHenning2010, author = {Havermann, Marc and Seiler, F. and Henning, P.}, title = {Shock Tunnel Experiments and CFD Simulation of Lateral Jet Interaction in Hypersonic Flows}, series = {New Results in Numerical and Experimental Fluid Mechanics VII; Contributions to the 16th STAB/DGLR Symposium Aachen, Germany 2008}, booktitle = {New Results in Numerical and Experimental Fluid Mechanics VII; Contributions to the 16th STAB/DGLR Symposium Aachen, Germany 2008}, editor = {Dillmann, Andreas and Heller, Gerd and Klaas, Michael and Kreplin, Hans-Peter and Nitsche, Wolfgang and Schr{\"o}der, Wolfgang}, publisher = {Springer}, address = {Berlin}, isbn = {9783642142437}, doi = {10.1007/978-3-642-14243-7_45}, pages = {365 -- 372}, year = {2010}, language = {en} } @inproceedings{BorggraefeDachwald2010, author = {Borggr{\"a}fe, Andreas and Dachwald, Bernd}, title = {Mission performance evaluation for solar sails using a refined SRP force model with variable optical coefficients}, series = {2nd International Symposium on Solar Sailing}, booktitle = {2nd International Symposium on Solar Sailing}, pages = {1 -- 6}, year = {2010}, abstract = {Solar sails provide ignificant advantages over other low-thrust propulsion systems because they produce thrust by the momentum exchange from solar radiation pressure (SRP) and thus do not consume any propellant.The force exerted on a very thin sail foil basically depends on the light incidence angle. Several analytical SRP force models that describe the SRP force acting on the sail have been established since the 1970s. All the widely used models use constant optical force coefficients of the reflecting sail material. In 2006,MENGALI et al. proposed a refined SRP force model that takes into account the dependancy of the force coefficients on the light incident angle,the sail's distance from the sun (and thus the sail emperature) and the surface roughness of the sail material [1]. In this paper, the refined SRP force model is compared to the previous ones in order to identify the potential impact of the new model on the predicted capabilities of solar sails in performing low-cost interplanetary space missions. All force models have been implemented within InTrance, a global low-thrust trajectory optimization software utilizing evolutionary neurocontrol [2]. Two interplanetary rendezvous missions, to Mercury and the near-Earth asteroid 1996FG3, are investigated. Two solar sail performances in terms of characteristic acceleration are examined for both scenarios, 0.2 mm/s2 and 0.5 mm/s2, termed "low" and "medium" sail performance. In case of the refined SRP model, three different values of surface roughness are chosen, h = 0 nm, 10 nm and 25 nm. The results show that the refined SRP force model yields shorter transfer times than the standard model.}, language = {en} } @inproceedings{KapoorBollerGiljohannetal.2010, author = {Kapoor, Hrshi and Boller, Christian and Giljohann, Sebastian and Braun, Carsten}, title = {Strategies for structural health monitoring implementation potential assessment in aircraft operational life extension considerations}, series = {2nd International Symposium on NDT in Aerospace : November 22-24, 2010 Hamburg, Germany}, booktitle = {2nd International Symposium on NDT in Aerospace : November 22-24, 2010 Hamburg, Germany}, publisher = {Dt. Gesellschaft f{\"u}r Zerst{\"o}rungsfreie Pr{\"u}fung}, address = {Berlin}, organization = {Deutsche Gesellschaft f{\"u}r Zerst{\"o}rungsfreie Pr{\"u}fung}, isbn = {978-3-940283-28-3}, pages = {9}, year = {2010}, language = {en} } @inproceedings{KapoorBraunBoller2010, author = {Kapoor, Hrshi and Braun, Carsten and Boller, Christian}, title = {Modelling and optimisation of maintenance intervals to realize structural health monitoring applications on aircraft}, series = {Structural health monitoring 2010 : proceedings of the Fifth European Workshop on Structural Health Monitoring held at Sorrento, Naples, Italy, June 28 - July 4, 2010 ; [EWSHM]}, booktitle = {Structural health monitoring 2010 : proceedings of the Fifth European Workshop on Structural Health Monitoring held at Sorrento, Naples, Italy, June 28 - July 4, 2010 ; [EWSHM]}, editor = {Casciati, Fabio}, publisher = {DEStech Publ.}, address = {Lancaster, Pa.}, isbn = {978-1-60595-024-2}, pages = {55 -- 63}, year = {2010}, language = {en} } @inproceedings{OlaruKowalskiSethietal.2011, author = {Olaru, Alexandra Maria and Kowalski, Julia and Sethi, Vaishali and Bl{\"u}mich, Bernhard}, title = {Fluid Transport in Porous Media probed by Relaxation-Exchange NMR}, series = {2011 Fall Meeting, AGU, San Francisco, Calif., 5-9 Dec.}, booktitle = {2011 Fall Meeting, AGU, San Francisco, Calif., 5-9 Dec.}, year = {2011}, language = {en} } @inproceedings{OhndorfDachwaldSeboldtetal.2011, author = {Ohndorf, Andreas and Dachwald, Bernd and Seboldt, Wolfgang and Schartner, Karl-Heinz}, title = {Flight times to the heliopause using a combination of solar and radioisotope electric propulsion}, series = {32nd International Electric Propulsion Conference}, booktitle = {32nd International Electric Propulsion Conference}, pages = {1 -- 12}, year = {2011}, abstract = {We investigate the interplanetary flight of a low-thrust space probe to the heliopause,located at a distance of about 200 AU from the Sun. Our goal was to reach this distance within the 25 years postulated by ESA for such a mission (which is less ambitious than the 15-year goal set by NASA). Contrary to solar sail concepts and combinations of allistic and electrically propelled flight legs, we have investigated whether the set flight time limit could also be kept with a combination of solar-electric propulsion and a second, RTG-powered upper stage. The used ion engine type was the RIT-22 for the first stage and the RIT-10 for the second stage. Trajectory optimization was carried out with the low-thrust optimization program InTrance, which implements the method of Evolutionary Neurocontrol,using Artificial Neural Networks for spacecraft steering and Evolutionary Algorithms to optimize the Neural Networks' parameter set. Based on a parameter space study, in which the number of thrust units, the unit's specific impulse, and the relative size of the solar power generator were varied, we have chosen one configuration as reference. The transfer time of this reference configuration was 29.6 years and the fastest one, which is technically more challenging, still required 28.3 years. As all flight times of this parameter study were longer than 25 years, we further shortened the transfer time by applying a launcher-provided hyperbolic excess energy up to 49 km2/s2. The resulting minimal flight time for the reference configuration was then 27.8 years. The following, more precise optimization to a launch with the European Ariane 5 ECA rocket reduced the transfer time to 27.5 years. This is the fastest mission design of our study that is flexible enough to allow a launch every year. The inclusion of a fly-by at Jupiter finally resulted in a flight time of 23.8 years,which is below the set transfer-time limit. However, compared to the 27.5-year transfer,this mission design has a significantly reduced launch window and mission flexibility if the escape direction is restricted to the heliosphere's "nose".}, language = {en} }