@inproceedings{HoevelerJanser2016, author = {Hoeveler, Bastian and Janser, Frank}, title = {The aerodynamically optimized design of a fan-in-wing duct}, series = {Applied Aerodynamics Research Conference 2016, Bristol, GB, Jul 19-21, 2016}, booktitle = {Applied Aerodynamics Research Conference 2016, Bristol, GB, Jul 19-21, 2016}, isbn = {1-85768-371-4}, pages = {1 -- 10}, year = {2016}, language = {en} } @inproceedings{OttenSchmidtWeber2016, author = {Otten, D. and Schmidt, M. and Weber, Tobias}, title = {Advances in Determination of Material Parameters for Functional Simulations Based on Process Simulations}, series = {SAMPE Europe Conference 16 Liege}, booktitle = {SAMPE Europe Conference 16 Liege}, isbn = {978-1-5108-3800-0}, pages = {570 -- 577}, year = {2016}, language = {en} } @inproceedings{WeberTellisDuhovic2016, author = {Weber, Tobias and Tellis, Jane J. and Duhovic, Miro}, title = {Characterization of tool-part-interaction an interlaminar friction for manufacturing process simulation}, series = {ECCM 17, 17th European Conference on Composite Materials, M{\"u}nchen, DE, Jun 26-30, 2016}, booktitle = {ECCM 17, 17th European Conference on Composite Materials, M{\"u}nchen, DE, Jun 26-30, 2016}, isbn = {978-3-00-053387-7}, pages = {1 -- 7}, year = {2016}, language = {en} } @inproceedings{HailerWeberArent2019, author = {Hailer, Benjamin and Weber, Tobias and Arent, Jan-Christoph}, title = {Manufacturing Process Simulation for Autoclave-Produced Sandwich Structures}, series = {Proceedings of SAMPE Europe Conference 2019, Nantes, France}, booktitle = {Proceedings of SAMPE Europe Conference 2019, Nantes, France}, pages = {1 -- 8}, year = {2019}, language = {en} } @inproceedings{WeberEnglhardHaileretal.2019, author = {Weber, Tobias and Englhard, Markus and Hailer, Benjamin and Arent, Jan-Christoph}, title = {Manufacturing Process Simulation for the Prediction of Tool-Part-Interaction and Ply Wrinkling}, series = {Proceedings of SAMPE Europe Conference 2019, Nantes, France}, booktitle = {Proceedings of SAMPE Europe Conference 2019, Nantes, France}, pages = {1 -- 10}, year = {2019}, language = {en} } @inproceedings{WeberEnglhardHaileretal.2015, author = {Weber, Tobias and Englhard, Markus and Hailer, Benjamin and Arent, Jan-Christoph}, title = {Manufacturing Process Simulation for the Prediction of Tool-Part-Interaction and Ply Wrinkling}, series = {Proceedings of SAMPE Europe Conference, Amiens , France}, booktitle = {Proceedings of SAMPE Europe Conference, Amiens , France}, pages = {1 -- 10}, year = {2015}, language = {en} } @inproceedings{Weber2015, author = {Weber, Tobias}, title = {Manufacturing Process Simulation for Tooling Optimization: Reduction of Quality Issues During Autoclave Manufacturing of Composite Parts}, series = {Proceedings of SAMPE Europe Conference 2015, Amiens, France}, booktitle = {Proceedings of SAMPE Europe Conference 2015, Amiens, France}, pages = {1 -- 8}, year = {2015}, language = {en} } @inproceedings{OttenSchmidWeber2015, author = {Otten, D. and Schmid, M. and Weber, Tobias}, title = {Advances In Sheet Metal-Forming: Reduction Of Tooling Cost By Methodical Optimization}, series = {Proceedings of SAMPE Europe Conference, Amiens , France}, booktitle = {Proceedings of SAMPE Europe Conference, Amiens , France}, year = {2015}, language = {en} } @inproceedings{KronigerHorikawaFunkeetal.2021, author = {Kroniger, Daniel and Horikawa, Atsushi and Funke, Harald and Pf{\"a}ffle, Franziska}, title = {Numerical investigation of micromix hydrogen flames at different combustor pressure levels}, series = {The Proceedings of the International Conference on Power Engineering (ICOPE)}, booktitle = {The Proceedings of the International Conference on Power Engineering (ICOPE)}, doi = {10.1299/jsmeicope.2021.15.2021-0237}, pages = {4 Seiten}, year = {2021}, abstract = {This study investigates the influence of pressure on the temperature distribution of the micromix (MMX) hydrogen flame and the NOx emissions. A steady computational fluid dynamic (CFD) analysis is performed by simulating a reactive flow with a detailed chemical reaction model. The numerical analysis is validated based on experimental investigations. A quantitative correlation is parametrized based on the numerical results. We find, that the flame initiation point shifts with increasing pressure from anchoring behind a downstream located bluff body towards anchoring upstream at the hydrogen jet. The numerical NOx emissions trend regarding to a variation of pressure is in good agreement with the experimental results. The pressure has an impact on both, the residence time within the maximum temperature region and on the peak temperature itself. In conclusion, the numerical model proved to be adequate for future prototype design exploration studies targeting on improving the operating range.}, language = {en} } @inproceedings{HorikawaOkadaYamaguchietal.2021, author = {Horikawa, Atsushi and Okada, Kunio and Yamaguchi, Masato and Aoki, Shigeki and Wirsum, Manfred and Funke, Harald and Kusterer, Karsten}, title = {Combustor development and engine demonstration of micro-mix hydrogen combustion applied to M1A-17 gas turbine}, series = {Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 3B: Combustion, Fuels, and Emissions}, booktitle = {Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 3B: Combustion, Fuels, and Emissions}, doi = {10.1115/GT2021-59666}, pages = {13 Seiten}, year = {2021}, abstract = {Kawasaki Heavy Industries, LTD. (KHI) has research and development projects for a future hydrogen society. These projects comprise the complete hydrogen cycle, including the production of hydrogen gas, the refinement and liquefaction for transportation and storage, and finally the utilization in a gas turbine for electricity and heat supply. Within the development of the hydrogen gas turbine, the key technology is stable and low NOx hydrogen combustion, namely the Dry Low NOx (DLN) hydrogen combustion. KHI, Aachen University of Applied Science, and B\&B-AGEMA have investigated the possibility of low NOx micro-mix hydrogen combustion and its application to an industrial gas turbine combustor. From 2014 to 2018, KHI developed a DLN hydrogen combustor for a 2MW class industrial gas turbine with the micro-mix technology. Thereby, the ignition performance, the flame stability for equivalent rotational speed, and higher load conditions were investigated. NOx emission values were kept about half of the Air Pollution Control Law in Japan: 84ppm (O2-15\%). Hereby, the elementary combustor development was completed. From May 2020, KHI started the engine demonstration operation by using an M1A-17 gas turbine with a co-generation system located in the hydrogen-fueled power generation plant in Kobe City, Japan. During the first engine demonstration tests, adjustments of engine starting and load control with fuel staging were investigated. On 21st May, the electrical power output reached 1,635 kW, which corresponds to 100\% load (ambient temperature 20 °C), and thereby NOx emissions of 65 ppm (O2-15, 60 RH\%) were verified. Here, for the first time, a DLN hydrogen-fueled gas turbine successfully generated power and heat.}, language = {en} }