@article{RossiStupazziniParisietal.2019, author = {Rossi, Leonardo and Stupazzini, Marco and Parisi, Davide and Holtschoppen, Britta and Ruggieri, Gabriella and Butenweg, Christoph}, title = {Empirical fragility functions and loss curves for long-span-beam buildings based on the 2012 Emilia-Romagna earthquake official database}, series = {Bulletin of Earthquake Engineering}, volume = {18}, journal = {Bulletin of Earthquake Engineering}, publisher = {Springer Nature}, issn = {1573-1456}, doi = {10.1007/s10518-019-00759-1}, pages = {1693 -- 1721}, year = {2019}, abstract = {The 2012 Emilia-Romagna earthquake, that mainly struck the homonymous Italian region provoking 28 casualties and damage to thousands of structures and infrastructures, is an exceptional source of information to question, investigate, and challenge the validity of seismic fragility functions and loss curves from an empirical standpoint. Among the most recent seismic events taking place in Europe, that of Emilia-Romagna is quite likely one of the best documented, not only in terms of experienced damages, but also for what concerns occurred losses and necessary reconstruction costs. In fact, in order to manage the compensations in a fair way both to citizens and business owners, soon after the seismic sequence, the regional administrative authority started (1) collecting damage and consequence-related data, (2) evaluating information sources and (3) taking care of the cross-checking of various reports. A specific database—so-called Sistema Informativo Gestione Europa (SFINGE)—was devoted to damaged business activities. As a result, 7 years after the seismic events, scientists can rely on a one-of-a-kind, vast and consistent database, containing information about (among other things): (1) buildings' location and dimensions, (2) occurred structural damages, (3) experienced direct economic losses and (4) related reconstruction costs. The present work is focused on a specific data subset of SFINGE, whose elements are Long-Span-Beam buildings (mostly precast) deployed for business activities in industry, trade or agriculture. With the available set of data, empirical fragility functions, cost and loss ratio curves are elaborated, that may be included within existing Performance Based Earthquake Engineering assessment toolkits.}, language = {en} } @article{RossiParisiCasarietal.2019, author = {Rossi, Leonardo and Parisi, Davide and Casari, Chiara and Montanari, Luca and Ruggieri, Gabriella and Holtschoppen, Britta and Butenweg, Christoph}, title = {Empirical Data about Direct Economic Consequences of Emilia-Romagna 2012 Earthquake on Long-Span-Beam Buildings}, series = {Earthquake Spectra}, volume = {35}, journal = {Earthquake Spectra}, number = {4}, issn = {1944-8201}, doi = {10.1193/100118EQS224DP}, pages = {1979 -- 2001}, year = {2019}, language = {en} } @article{RossiHoltschoppenButenweg2019, author = {Rossi, Leonardo and Holtschoppen, Britta and Butenweg, Christoph}, title = {Official data on the economic consequences of the 2012 Emilia-Romagna earthquake: a first analysis of database SFINGE}, series = {Bulletin of Earthquake Engineering}, volume = {17}, journal = {Bulletin of Earthquake Engineering}, number = {9}, publisher = {Springer}, address = {Berlin}, doi = {10.1007\%2Fs10518-019-00655-8}, pages = {4855 -- 4884}, year = {2019}, language = {en} } @inproceedings{RosinKubalskiButenweg2014, author = {Rosin, Julia and Kubalski, Thomas and Butenweg, Christoph}, title = {Seismic Design of cylindrical liquid storage tanks}, series = {Seismic design of industrial facilities : proceedings of the International Conference on Seismic Design of Industrial Facilities (SeDIF-Conference) ; [Aachen, 26. - 27. September 2013] / Chair of Structural Statics and Dynamics, RWTH Aachen. Sven Klinkel ..., ed.}, booktitle = {Seismic design of industrial facilities : proceedings of the International Conference on Seismic Design of Industrial Facilities (SeDIF-Conference) ; [Aachen, 26. - 27. September 2013] / Chair of Structural Statics and Dynamics, RWTH Aachen. Sven Klinkel ..., ed.}, publisher = {Springer Vieweg}, address = {Wiesbaden}, organization = {International Conference on Seismic Design of Industrial Facilities <2013, Aachen>}, isbn = {978-3-658-02810-7 (E-Book) ; 978-3-658-02809-1 (Print)}, doi = {10.1007/978-3-658-02810-7_36}, pages = {429 -- 440}, year = {2014}, language = {en} } @inproceedings{RosinKubalskiButenweg2013, author = {Rosin, Julia and Kubalski, Thomas and Butenweg, Christoph}, title = {Seismic isolation of cylindrical liquid storage tanks}, series = {Seismic design of industrial facilities}, booktitle = {Seismic design of industrial facilities}, editor = {Klinkel, Sven and Butenweg, Christoph and Lin, Gao and Holtschoppen, Britta}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-02810-7}, doi = {10.1007/978-3-658-02810-7_36}, pages = {429 -- 440}, year = {2013}, abstract = {Seismic excited liquid filled tanks are subjected to extreme loading due to hydrodynamic pressures, which can lead to nonlinear stability failure of the thinwalled cylindrical tanks, as it is known from past earthquakes. A significant reduction of the seismically induced loads can be obtained by the application of base isolation systems, which have to be designed carefully with respect to the modified hydrodynamic behaviour of the tank in interaction with the liquid. For this reason a highly sophisticated fluid-structure interaction model has to be applied for a realistic simulation of the overall dynamic system. In the following, such a model is presented and compared with the results of simplified mathematical models for rigidly supported tanks. Finally, it is examined to what extent a simple mechanical model can represent the behaviour of a base isolated tank in case of seismic excitation}, language = {en} } @inproceedings{RosinHenneboehlButenweg2014, author = {Rosin, Julia and Henneb{\"o}hl, Benedickt and Butenweg, Christoph}, title = {Global buckling analysis of cylindrical liquid storage tanks under earthquake loading}, series = {2nd European Conference on Earthquake Engineering and Seismology 2014 (2nd ECEES) : joint event of the 15th European Conference on Earthquake Engineering and the 34th General Assembly of the European Seismological Commission : Istanbul, Turkey, 25-29 August 2014 / European Association for Earthquake Engineering (EAEE) ; Vol. 6}, booktitle = {2nd European Conference on Earthquake Engineering and Seismology 2014 (2nd ECEES) : joint event of the 15th European Conference on Earthquake Engineering and the 34th General Assembly of the European Seismological Commission : Istanbul, Turkey, 25-29 August 2014 / European Association for Earthquake Engineering (EAEE) ; Vol. 6}, publisher = {Curran Associates, Inc.}, address = {Red Hook, NY}, organization = {European Conference on Earthquake Engineering and Seismology <2, 2014, Istanbul>}, isbn = {978-1-5108-1021-1}, pages = {5270 -- 5281}, year = {2014}, language = {en} } @article{RosinButenwegCacciatoreetal.2018, author = {Rosin, Julia and Butenweg, Christoph and Cacciatore, Pamela and Boesen, Niklas}, title = {Investigation of the seismic performance of modern masonry buildings during the Emilia Romagna earthquake series}, series = {Mauerwerk}, volume = {22}, journal = {Mauerwerk}, number = {4}, publisher = {Ernst \& Sohn}, address = {Berlin}, issn = {1437-1022}, doi = {10.1002/dama.201800013}, pages = {238 -- 250}, year = {2018}, abstract = {The article presents the investigation of the seismic behaviour of a modern URM building located in the municipality of Finale Emilia in province of Modena, Northern Italy. The building is situated in the centre of the series of the 2012 Northern Italy earthquakes and has not suffered any damage during the earthquake series in 2012. The observed earthquake resistance of the building is compared with predicted resistances based on linear and nonlinear design approaches according to Eurocode. Furthermore, probabilistic analyses based on nonlinear calculation models taking into account scattering of the most relevant input parameters are carried out to identify their influence to the results and to derive fragility curves.}, language = {en} } @inproceedings{RosinButenwegBoesenetal.2018, author = {Rosin, Julia and Butenweg, Christoph and Boesen, Niklas and Gellert, Christoph}, title = {Evaluation of the Seismic Behavior of a Modern URM Building During the 2012 Northern Italy Earthquakes}, series = {16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018}, booktitle = {16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018}, pages = {1 -- 12}, year = {2018}, language = {en} } @inproceedings{RosinButenweg2014, author = {Rosin, Julia and Butenweg, Christoph}, title = {Seismic isolation of cylindrical liquid storage tanks}, series = {Proceedings of the 9th European Conference on Structural Dynamics, EURODYN 2014 Porto, Portugal, 30 June - 2 July 2014 / A. Cunha, E. Caetano, .... (eds.)}, booktitle = {Proceedings of the 9th European Conference on Structural Dynamics, EURODYN 2014 Porto, Portugal, 30 June - 2 July 2014 / A. Cunha, E. Caetano, .... (eds.)}, address = {Porto}, organization = {European Conference on Structural Dynamics, EURODYN <9, 2014, Porto>}, isbn = {978-972-752-165-4}, pages = {3145 -- 3152}, year = {2014}, language = {en} } @inproceedings{RosinMykoniouButenweg2017, author = {Rosin, J. and Mykoniou, K. and Butenweg, Christoph}, title = {Analysis Of Base Isolated Liquid Storage Tanks With 3D Fsi-Analysis As Well As Simplified Approaches}, series = {16th World Conference on Earthquake Engineering, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017}, booktitle = {16th World Conference on Earthquake Engineering, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017}, publisher = {Chilean Association on Seismology and Earthquake Engineering (ACHISINA)}, pages = {1 -- 14}, year = {2017}, abstract = {Tanks are preferably designed, for cost-saving reasons, as circular, cylindrical, thin-walled shells. In case of seismic excitation, these constructions are highly vulnerable to stability failures. An earthquake-resistant design of rigidly supported tanks for high seismic loading demands, however, uneconomic wall thicknesses. A cost-effective alternative can be provided by base isolation systems. In this paper, a simplified seismic design procedure for base isolated tanks is introduced, by appropriately modifying the standard mechanical model for flexible, rigidly supported tanks. The non-linear behavior of conventional base isolation systems becomes an integral part of a proposed simplified process, which enables the assessment of the reduced hydrodynamic forces acting on the tank walls and the corresponding stress distribution. The impulsive and convective actions of the liquid are taken into account. The validity of this approach is evaluated by employing a non-linear fluid-structure interaction algorithm of finite element method. Special focus is placed on the boundary conditions imposed from the base isolation and the resulting hydrodynamic pressures. Both horizontal and vertical component of ground motion are considered in order to study the principal effects of the base isolation on the pressure distribution of the tank walls. The induced rocking effects associated with elastomeric bearings are discussed. The results manifest that base isolated tanks can be designed for seismic loads by means of the proposed procedure with sufficient accuracy, allowing to dispense with numerically expensive techniques.}, language = {en} }