@book{Laack2022, author = {Laack, Walter van}, title = {Greater Than the Entire Universe}, publisher = {van Laack GmbH}, address = {Aachen}, isbn = {978-3-936624-52-6}, pages = {120 Seiten}, year = {2022}, language = {en} } @article{LeversStaatLaack2016, author = {Levers, A. and Staat, Manfred and Laack, Walter van}, title = {Analysis of the long-term effect of the MBST® nuclear magnetic resonance therapy on gonarthrosis}, series = {Orthopedic Practice}, volume = {47}, journal = {Orthopedic Practice}, number = {11}, pages = {521 -- 528}, year = {2016}, language = {en} } @article{KnobeGiesenPlateetal.2016, author = {Knobe, M. and Giesen, M. and Plate, S. and Gradl-Dietsch, G. and Buecking, B. and Eschbach, D. and Laack, Walter van and Pape, H.-C.}, title = {The Aachen mobility and balance index to measure physiological falls risk: a comparison with the Tinetti POMA scale}, series = {European Journal Of Trauma And Emergency Surgery}, volume = {42}, journal = {European Journal Of Trauma And Emergency Surgery}, number = {5}, publisher = {Springer}, address = {Berlin}, issn = {1863-9941}, doi = {10.1007/s00068-016-0693-2}, pages = {537 -- 545}, year = {2016}, abstract = {Purpose The most commonly used mobility assessments for screening risk of falls among older adults are rating scales such as the Tinetti performance oriented mobility assessment (POMA). However, its correlation with falls is not always predictable and disadvantages of the scale include difficulty to assess many of the items on a 3-point scale and poor specificity. The purpose of this study was to describe the ability of the new Aachen Mobility and Balance Index (AMBI) to discriminate between subjects with a fall history and subjects without such events in comparison to the Tinetti POMA Scale. Methods For this prospective cohort study, 24 participants in the study group and 10 in the control group were selected from a population of patients in our hospital who had met the stringent inclusion criteria. Both groups completed the Tinetti POMA Scale (gait and balance component) and the AMBI (tandem stance, tandem walk, ten-meter-walk-test, sit-to-stand with five repetitions, 360° turns, timed-up-and-go-test and measurement of the dominant hand grip strength). A history of falls and hospitalization in the past year were evaluated retrospectively. The relationships among the mobility tests were examined with Bland-Altmananalysis. Receiver-operated characteristics curves, sensitivity and specificity were calculated. Results The study showed a strong negative correlation between the AMBI (17 points max., highest fall risk) and Tinetti POMA Scale (28 points max., lowest fall risk; r = -0.78, p < 0.001) with an excellent discrimination between community-dwelling older people and a younger control group. However, there were no differences in any of the mobility and balance measurements between participants with and without a fall history with equal characteristics in test comparison (AMBI vs. Tinetti POMA Scale: AUC 0.570 vs. 0.598; p = 0.762). The Tinetti POMA Scale (cut-off <20 points) showed a sensitivity of 0.45 and a specificity of 0.69, the AMBI a sensitivity of 0.64 and a specificity of 0.46 (cut-off >5 points). Conclusion The AMBI comprises mobility and balance tasks with increasing difficulty as well as a measurement of the dominant hand-grip strength. Its ability to identify fallers was comparable to the Tinetti POMA Scale. However, both measurement sets showed shortcomings in discrimination between fallers and non-fallers based on a self-reported retrospective falls-status.}, language = {en} } @article{Laack2014, author = {Laack, Walter van}, title = {Nature is much smarter than expected: the Genetic Code is not degenerate}, series = {American journal of humanities and social sciences}, volume = {Vol. 2}, journal = {American journal of humanities and social sciences}, number = {No. 1}, issn = {2329-0781 (Print) ; 2329-079X (Online)}, pages = {10 -- 12}, year = {2014}, abstract = {In any books about genetics it can still today be read that our genetic code is called "degenerate" because it is still believed that 43 = 64 triplets encode the 20 essential amino acids. Indeed we have to assume the inverse law, what means that 34 = 81 exact code positions are really effective for our genetic code and encode the amino acids, compiled to proteins. This very important discovery leads to two completely new results that are limits-overlooking: 1) 34 (=81) genetic code positions mean exactly the same number as there are stable and naturally existing chemical elements in our universe. This famous argument should now lead to some alternative, as well as new fundamental conclusions about our existence. 2) A genetic code positioning system shows that nature is much smarter than expected: mutations are made less dangerous than believed, because they won't be that easily able any more to cause severe damages in the protein-synthesis. This should also lead to some alternative views upon evolution of life.}, language = {en} } @article{Laack2014, author = {Laack, Walter van}, title = {Therefore Fermat is right}, series = {American journal of humanities and social sciences : AJHSS}, volume = {2}, journal = {American journal of humanities and social sciences : AJHSS}, number = {2}, issn = {2329-079X (E-Journal); 2329-0781 (Print)}, pages = {117 -- 120}, year = {2014}, abstract = {It was Fernat's idea to investigate how many numbers would fulfill the equation according to the Pythagorean Theorem if the exponent were increased to random, e.g. to a3 + b3 = c3. His question became therefore: are there two whole numbers the cubes of which add up to the volume of the cube of a third whole number? He posed this same question, of course, for all kinds of higher exponents, so that the equation could be generalized: is there an integral solution for the equation an + bn = cn, if the exponent n is higher than 2? Although in 1993, the English mathematician Andrew Wiles was able to produce an arithmetical proof for Fermat's famous theorem, I will show that there is a simple logical explanation which is also pragmatic and plausible and what is the result of a fundamental alternative idea how our world seems to be constructed.}, language = {en} } @article{Laack2013, author = {Laack, Walter van}, title = {The genetic code should be seen as a positioning code}, series = {British journal of arts and social sciences. Vol. 14 (2013), No. 1}, journal = {British journal of arts and social sciences. Vol. 14 (2013), No. 1}, issn = {2046-9578}, pages = {93 -- 97}, year = {2013}, language = {en} } @article{Laack2013, author = {Laack, Walter van}, title = {Why natural constants are as they are}, series = {British journal of arts and social sciences}, volume = {Vol. 15}, journal = {British journal of arts and social sciences}, number = {Nr. 2}, publisher = {BritishJournal Publ. Inc}, address = {London}, issn = {2046-9578 (E-Journal)}, pages = {198 -- 203}, year = {2013}, language = {en} } @article{Laack2013, author = {Laack, Walter van}, title = {Our world is well ordered in measurement and number : or why natural constants are as they are}, series = {American Journal of Humanities and Social Sciences (AHSS)}, volume = {1}, journal = {American Journal of Humanities and Social Sciences (AHSS)}, number = {4}, issn = {2329-079X}, doi = {10.11634/232907811301390}, pages = {219 -- 221}, year = {2013}, abstract = {All the important natural constants can be logically explained with and derived from the first four ordinal numbers, 1, 2, 3 and 4, its addition to ten and finally the standard values for obviously maximal feasibility Ω and the optimum in our world, the Golden Section (GS), i.e. the number sequences 273 and 618. They both are the first three numbers of irrational results by an arithmetical transformation of simple geometrical relationships by creating multiplicity out of singularity. Both of them show that the infinite is inherent in finiteness and explain in a simple way the smallest deviations and fluctuations between the physical AS-IS state and the obvious spiritual ideal behind: Wherever we look in this world, and especially in important key-positions, we regularly find these sequences. All of the above mentioned numbers so seem to be key players in our world, what can be demonstrated by the derivation of natural constants.}, language = {en} } @book{Laack2007, author = {Laack, Walter van}, title = {To perceive the world with logic}, publisher = {van Laack}, address = {Aachen}, isbn = {978-3-936624-08-3}, pages = {340 S. : Ill., graph. Darst}, year = {2007}, language = {en} } @book{Laack2003, author = {Laack, Walter van}, title = {A better history of our world / Vol. 3. Death}, publisher = {van Laack}, address = {Aachen}, isbn = {978-3-936624-01-4}, pages = {276 S.}, year = {2003}, language = {en} }