@article{WagnerDollSchoening2014, author = {Wagner, Patrick and Doll, Theodor and Sch{\"o}ning, Michael Josef}, title = {Engineering of functional interfaces / Patrick Wagner ; Theodor Doll ; Michael J. Sch{\"o}ning (eds.)}, series = {Physica status solidi (A) : Applications and materials science}, volume = {211}, journal = {Physica status solidi (A) : Applications and materials science}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-396X (E-Book); 1862-6319 (E-Book); 0031-8965 (Print); 1862-6300 (Print)}, doi = {10.1002/pssa.201470241}, pages = {1339 -- 1339}, year = {2014}, language = {en} } @article{GuoMiyamotoWagneretal.2014, author = {Guo, Yuanyuan and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Theoretical study and simulation of light-addressable potentiometric sensors}, series = {Physica status solidi (A) : applications and materials}, volume = {211}, journal = {Physica status solidi (A) : applications and materials}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0031-8965}, doi = {10.1002/pssa.201330354}, pages = {1467 -- 1472}, year = {2014}, abstract = {The light-addressable potentiometric sensor (LAPS) is a semiconductor-based potentiometric sensor using a light probe with an ability of detecting the concentration of biochemical species in a spatially resolved manner. As an important biomedical sensor, research has been conducted to improve its performance, for instance, to realize high-speed measurement. In this work, the idea of facilitating the device-level simulation, instead of using an equivalent-circuit model, is presented for detailed analysis and optimization of the performance of the LAPS. Both carrier distribution and photocurrent response have been simulated to provide new insight into both amplitude-mode and phase-mode operations of the LAPS. Various device parameters can be examined to effectively design and optimize the LAPS structures and setups for enhanced performance.}, language = {en} } @article{RiedelKartchemnikSchoeningetal.2014, author = {Riedel, Marc and Kartchemnik, Julia and Sch{\"o}ning, Michael Josef and Lisdat, Fred}, title = {Impedimetric DNA detection - steps forward to sensorial application}, series = {Analytical chemistry}, volume = {86 (2014)}, journal = {Analytical chemistry}, number = {15}, publisher = {ACS Publications}, address = {Columbus}, issn = {1520-6882 (E-Journal); 0003-2700 (Print); 0096-4484 (Print)}, doi = {10.1021/ac501800q}, pages = {7867 -- 7874}, year = {2014}, abstract = {This study describes a label-free impedimetric sensor based on short ssDNA recognition elements for the detection of hybridization events. We concentrate on the elucidation of the influence of target length and recognition sequence position on the sensorial performance. The impedimetric measurements are performed in the presence of the redox system ferri-/ferrocyanide and show an increase in charge transfer resistance upon hybridization of ssDNA to the sensor surface. Investigations on the impedimetric signal stability demonstrate a clear influence of the buffers used during the sensor preparation and the choice of the passivating mercaptoalcanol compound. A stable sensor system has been developed, enabling a reproducible detection of 25mer target DNA in the low nanomolar range. After hybridization, a sensor regeneration can be reached with deionized water by adjustment of effective convection conditions, ensuring a sensor reusability. By investigations of longer targets with overhangs exposed to the solution, we can demonstrate applicability of the impedimetric detection for longer ssDNA. However, a decreasing charge transfer resistance change (ΔRct) is found by extending the overhang. As a strategy to increase the impedance change for longer target strands, the position of the recognition sequence can be designed in a way that a small overhang is exposed to the electrode surface. This is found to result in an increase in the relative Rct change. These results suggest that DNA and consequently negative charge near the electrode possess a larger impact on the impedimetric signal than DNA further away.}, language = {en} } @article{GuoMiyamotoWagneretal.2014, author = {Guo, Yuanyuan and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Device simulation of the light-addressable potentiometric sensor for the investigation of the spatial resolution}, series = {Sensors and actuators B: Chemical}, volume = {204}, journal = {Sensors and actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3077 (E-Journal); 0925-4005 (Print)}, doi = {10.1016/j.snb.2014.08.016}, pages = {659 -- 665}, year = {2014}, abstract = {As a semiconductor-based electrochemical sensor, the light-addressable potentiometric sensor (LAPS) can realize two dimensional visualization of (bio-)chemical reactions at the sensor surface addressed by localized illumination. Thanks to this imaging capability, various applications in biochemical and biomedical fields are expected, for which the spatial resolution is critically significant. In this study, therefore, the spatial resolution of the LAPS was investigated in detail based on the device simulation. By calculating the spatiotemporal change of the distributions of electrons and holes inside the semiconductor layer in response to a modulated illumination, the photocurrent response as well as the spatial resolution was obtained as a function of various parameters such as the thickness of the Si substrate, the doping concentration, the wavelength and the intensity of illumination. The simulation results verified that both thinning the semiconductor substrate and increasing the doping concentration could improve the spatial resolution, which were in good agreement with known experimental results and theoretical analysis. More importantly, new findings of interests were also obtained. As for the dependence on the wavelength of illumination, it was found that the known dependence was not always the case. When the Si substrate was thick, a longer wavelength resulted in a higher spatial resolution which was known by experiments. When the Si substrate was thin, however, a longer wavelength of light resulted in a lower spatial resolution. This finding was explained as an effect of raised concentration of carriers, which reduced the thickness of the space charge region. The device simulation was found to be helpful to understand the relationship between the spatial resolution and device parameters, to understand the physics behind it, and to optimize the device structure and measurement conditions for realizing higher performance of chemical imaging systems.}, language = {en} } @article{KhaydukovaZadorozhnayaKirsanovetal.2014, author = {Khaydukova, M. M. and Zadorozhnaya, O. A. and Kirsanov, D. O. and Iken, Heiko and Rolka, David and Sch{\"o}ning, Michael Josef and Babain, V. A. and Vlasov, Yu. G. and Legin, A. V.}, title = {Multivariate processing of atomic-force microscopy images for detection of the response of plasticized polymeric membranes}, series = {Russian journal of applied chemistry}, volume = {87}, journal = {Russian journal of applied chemistry}, number = {3}, publisher = {Springer}, address = {Dordrecht}, issn = {1608-3296 (E-Journal); 1070-4272 (Print)}, doi = {10.1134/S1070427214030112}, pages = {307 -- 314}, year = {2014}, abstract = {The possibility of using the atomic-force microscopy as a method for detection of the analytical signal from plasticized polymeric sensor membranes was analyzed. The surfaces of cadmium-selective membranes based on two polymeric matrices were examined. The digital images were processed with multivariate image analysis techniques. A correlation was found between the surface profile of an ion-selective membrane and the concentration of the ion in solution.}, language = {en} } @article{BaeckerSchusserPoghossianetal.2014, author = {B{\"a}cker, Matthias and Schusser, Sebastian and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Multi-Parametererfassung mit siliziumbasiertem Sensorchip: Aus Drei mach Eins}, series = {GIT Labor-Fachzeitschrift}, journal = {GIT Labor-Fachzeitschrift}, number = {2}, publisher = {Wiley}, issn = {0016-3538}, pages = {28 -- 30}, year = {2014}, language = {de} } @article{MuribYeapMartensetal.2014, author = {Murib, Mohammed Sharif and Yeap, Weng-Siang and Martens, Daan and Bienstman, Peter and Ceuninck, Ward de and Grinsven, Bart van and Sch{\"o}ning, Michael Josef and Michiels, Luc and Haenen, Ken and Ameloot, Marcel and Serpeng{\"u}zel, Ali and Wagner, Patrick}, title = {Photonic detection and characterization of DNA using sapphire microspheres}, series = {Journal of biomedical optics}, volume = {19}, journal = {Journal of biomedical optics}, number = {9}, publisher = {SPIE}, address = {Bellingham}, issn = {1560-2281 (E-Journal); 1083-3668 (Print)}, doi = {10.1117/1.JBO.19.9.097006}, pages = {097006}, year = {2014}, abstract = {A microcavity-based deoxyribonucleic acid (DNA) optical biosensor is demonstrated for the first time using synthetic sapphire for the optical cavity. Transmitted and elastic scattering intensity at 1510 nm are analyzed from a sapphire microsphere (radius 500  μm, refractive index 1.77) on an optical fiber half coupler. The 0.43 nm angular mode spacing of the resonances correlates well with the optical size of the sapphire sphere. Probe DNA consisting of a 36-mer fragment was covalently immobilized on a sapphire microsphere and hybridized with a 29-mer target DNA. Whispering gallery modes (WGMs) were monitored before the sapphire was functionalized with DNA and after it was functionalized with single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA). The shift in WGMs from the surface modification with DNA was measured and correlated well with the estimated thickness of the add-on DNA layer. It is shown that ssDNA is more uniformly oriented on the sapphire surface than dsDNA. In addition, it is shown that functionalization of the sapphire spherical surface with DNA does not affect the quality factor (Q≈104) of the sapphire microspheres. The use of sapphire is especially interesting because this material is chemically resilient, biocompatible, and widely used for medical implants.}, language = {en} } @article{SiqueiraMolinnusBegingetal.2014, author = {Siqueira, Jose R. and Molinnus, Denise and Beging, Stefan and Sch{\"o}ning, Michael Josef}, title = {Incorporating a hybrid urease-carbon nanotubes sensitive nanofilm on capacitive field-effect sensors for urea detection}, series = {Analytical chemistry}, volume = {86}, journal = {Analytical chemistry}, number = {11}, publisher = {ACS Publications}, address = {Columbus}, issn = {1520-6882 (E-Journal); 0003-2700 (Print); 0096-4484 (Print)}, doi = {10.1021/ac500458s}, pages = {5370 -- 5375}, year = {2014}, abstract = {The ideal combination among biomolecules and nanomaterials is the key for reaching biosensing units with high sensitivity. The challenge, however, is to find out a stable and sensitive film architecture that can be incorporated on the sensor's surface. In this paper, we report on the benefits of incorporating a layer-by-layer (LbL) nanofilm of polyamidoamine (PAMAM) dendrimer and carbon nanotubes (CNTs) on capacitive electrolyte-insulator-semiconductor (EIS) field-effect sensors for detecting urea. Three sensor arrangements were studied in order to investigate the adequate film architecture, involving the LbL film with the enzyme urease: (i) urease immobilized directly onto a bare EIS [EIS-urease] sensor; (ii) urease atop the LbL film over the EIS [EIS-(PAMAM/CNT)-urease] sensor; and (iii) urease sandwiched between the LbL film and another CNT layer [EIS-(PAMAM/CNT)-urease-CNT]. The surface morphology of all three urea-based EIS biosensors was investigated by atomic force microscopy (AFM), while the biosensing abilities were studied by means of capacitance-voltage (C/V) and dynamic constant-capacitance (ConCap) measureaments at urea concentrations ranging from 0.1 mM to 100 mM. The EIS-urease and EIS-(PAMAM/CNT)-urease sensors showed similar sensitivity (∼18 mV/decade) and a nonregular signal behavior as the urea concentration increased. On the other hand, the EIS-(PAMAM/CNT)-urease-CNT sensor exhibited a superior output signal performance and higher sensitivity of about 33 mV/decade. The presence of the additional CNT layer was decisive to achieve a urea based EIS sensor with enhanced properties. Such sensitive architecture demonstrates that the incorporation of an adequate hybrid enzyme-nanofilm as sensing unit opens new prospects for biosensing applications using the field-effect sensor platform.}, language = {en} } @article{GuoSekiMiyamotoetal.2014, author = {Guo, Yuanyuan and Seki, Kosuke and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Device simulation of the light-addressable potentiometric sensor with a novel photoexcitation method for a higher spatial resolution}, series = {Procedia Engineering}, volume = {87}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2014.11.369}, pages = {456 -- 459}, year = {2014}, abstract = {A novel photoexcitation method for the light-addressable potentiometric sensor (LAPS) realized a higher spatial resolution of chemical imaging. In this method, a modulated light probe, which generates the alternating photocurrent signal, is surrounded by a ring of constant light, which suppresses the lateral diffusion of photocarriers by enhancing recombination. A device simulation verified that a higher spatial resolution could be obtained by adjusting the gap between the modulated and constant light. It was also found that a higher intensity and a longer wavelength of constant light was more effective. However, there exists a tradeoff between the spatial resolution and the amplitude of the photocurrent, and thus, the signal-to-noise ratio. A tilted incidence of constant light was applied, which could achieve even higher resolution with a smaller loss of photocurrent.}, language = {en} } @article{MiyamotoSekiWagneretal.2014, author = {Miyamoto, K. and Seki, K. and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, T.}, title = {Enhancement of the spatial resolution of the chemical imaging sensor by a hybrid fiber-optic illumination}, series = {Procedia Engineering}, volume = {87}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2014.11.563}, pages = {612 -- 615}, year = {2014}, abstract = {The chemical imaging sensor, which is based on the principle of the light-addressable potentiometric sensor (LAPS), is a powerful tool to visualize the spatial distribution of chemical species on the sensor surface. The spatial resolution of this sensor depends on the diffusion of photocarriers excited by a modulated light. In this study, a novel hybrid fiber-optic illumination was developed to enhance the spatial resolution. It consists of a modulated light probe to generate a photocurrent signal and a ring of constant light, which suppresses the lateral diffusion of minority carriers excited by the modulated light. It is demonstrated that the spatial resolution was improved from 92 μm to 68 μm.}, language = {en} }