@article{ValeroBungCrookston2018, author = {Valero, Daniel and Bung, Daniel Bernhard and Crookston, B.M.}, title = {Energy dissipation of a Type III basin under design and adverse conditions for stepped and smooth spillways}, series = {Journal of Hydraulic Engineering}, volume = {144}, journal = {Journal of Hydraulic Engineering}, number = {7}, publisher = {ASCE}, address = {Reston, Va.}, issn = {0733-9429}, doi = {10.1061/(ASCE)HY.1943-7900.0001482}, year = {2018}, abstract = {New information regarding the influence of a stepped chute on the hydraulic performance of the United States Bureau of Reclamation (Reclamation) Type III hydraulic jump stilling basin is presented for design (steady) and adverse (decreasing tailwater) conditions. Using published experimental data and computational fluid dynamics (CFD) models, this paper presents a detailed comparison between smooth-chute and stepped-chute configurations for chute slopes of 0.8H:1V and 4H:1V and Froude numbers (F) ranging from 3.1 to 9.5 for a Type III basin designed for F = 8. For both stepped and smooth chutes, the relative role of each basin element was quantified, up to the most hydraulic extreme case of jump sweep-out. It was found that, relative to a smooth chute, the turbulence generated by a stepped chute causes a higher maximum velocity decay within the stilling basin, which represents an enhancement of the Type III basin's performance but also a change in the relative role of the basin elements. Results provide insight into the ability of the CFD models [unsteady Reynolds-averaged Navier-Stokes (RANS) equations with renormalization group (RNG) k-ϵ turbulence model and volume-of-fluid (VOF) for free surface tracking] to predict the transient basin flow structure and velocity profiles. Type III basins can perform adequately with a stepped chute despite the effects steps have on the relative role of each basin element. It is concluded that the classic Type III basin design, based upon methodology by reclamation specific to smooth chutes, can be hydraulically improved for the case of stepped chutes for design and adverse flow conditions using the information presented herein.}, language = {en} } @article{KerpenBungValeroetal.2017, author = {Kerpen, Nils B. and Bung, Daniel Bernhard and Valero, Daniel and Schlurmann, Torsten}, title = {Energy dissipation within the wave run-up at stepped revetments}, series = {Journal of Ocean University of China}, volume = {16}, journal = {Journal of Ocean University of China}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {1993-5021}, doi = {10.1007/s11802-017-3355-z}, pages = {649 -- 654}, year = {2017}, language = {en} } @article{BienerSasse1988, author = {Biener, Ernst and Sasse, T.}, title = {Experience with new techniques in slurry cutoff wall construction}, series = {ISWA 88, proceedings of the 5th International Solid Wastes Conference : September 11 - 16th, 1988, Copenhagen, Denmark / ed. by Lizzi Andersen ... - Vol. 1 : Oral presentations}, journal = {ISWA 88, proceedings of the 5th International Solid Wastes Conference : September 11 - 16th, 1988, Copenhagen, Denmark / ed. by Lizzi Andersen ... - Vol. 1 : Oral presentations}, publisher = {Acad. Press}, address = {London [u.a.]}, isbn = {0-12-058451-4}, pages = {41 -- 46}, year = {1988}, language = {en} } @article{Kirsch2010, author = {Kirsch, Ansgar}, title = {Experimental investigation of the face stability of shallow tunnels in sand}, series = {Acta Geotechnica}, volume = {5}, journal = {Acta Geotechnica}, number = {1}, publisher = {Springer}, address = {Berlin}, issn = {1861-1125}, doi = {10.1007/s11440-010-0110-7}, pages = {43 -- 62}, year = {2010}, abstract = {Various models have been proposed for the prediction of the necessary support pressure at the face of a shallow tunnel. To assess their quality, the collapse of a tunnel face was modelled with small-scale model tests at single gravity. The development of the failure mechanism and the support force at the face in dry sand were investigated. The observed displacement patterns show a negligible influence of overburden on the extent and evolution of the failure zone. The latter is significantly influenced, though, by the initial density of the sand: in dense sand a chimney-wedge-type collapse mechanism developed, which propagated towards the soil surface. Initially, loose sand did not show any discrete collapse mechanism. The necessary support force was neither influenced by the overburden nor the initial density. A comparison with quantitative predictions by several theoretical models showed that the measured necessary support pressure is overestimated by most of the models. Those by Vermeer/Ruse and L{\´e}ca/Dormieux showed the best agreement to the measurements.}, language = {en} } @article{Bung2021, author = {Bung, Daniel Bernhard}, title = {Extreme flooding in Western Germany: some thoughts on hazards, return periods and risk}, series = {Hydrolink}, journal = {Hydrolink}, number = {4}, publisher = {International Association for Hydro-Environment Engineering and Research (IAHR)}, address = {Madrid}, pages = {108 -- 113}, year = {2021}, abstract = {The low-pressure system Bernd involved extreme rainfalls in the Western part of Germany in July 2021, resulting in major floods, severe damages and a tremendous number of casualties. Such extreme events are rare and full flood protection can never be ensured with reasonable financial means. But still, this event must be starting point to reconsider current design concepts. This article aims at sharing some thoughts on potential hazards, the selection of return periods and remaining risk with the focus on Germany.}, language = {en} } @article{HoettgesFeldhausBrockhausetal.1992, author = {H{\"o}ttges, J{\"o}rg and Feldhaus, R. and Brockhaus, T. and Rouv{\´e}, Gerhard}, title = {Finite Element Simulation of Flow and Pollution Transport applied to a Part of the River Rhine / Feldhaus, R.; J. H{\"o}ttges, T. Brockhaus; G. Rouv{\´e}}, series = {Hydraulic and environmental modelling : proceedings of the Second International Conference on Hydraulic and Environmental Modelling of Coastal, Estuarine, and River Waters / [IAHR-AIRH]. Ed. by R. A. Falconer}, journal = {Hydraulic and environmental modelling : proceedings of the Second International Conference on Hydraulic and Environmental Modelling of Coastal, Estuarine, and River Waters / [IAHR-AIRH]. Ed. by R. A. Falconer}, publisher = {Ashgate}, address = {Aldershot, Hants, UK [u.a.]}, year = {1992}, language = {en} } @article{KerresGredigkHoffmannJatheetal.2020, author = {Kerres, Karsten and Gredigk-Hoffmann, Sylvia and Jathe, R{\"u}diger and Orlik, Stefan and Sariyildiz, Mustafa and Schmidt, Torsten and Sympher, Klaus-Jochen and Uhlenbroch, Adrian}, title = {Future approaches for sewer system condition assessment}, series = {Water Practice \& Technology}, journal = {Water Practice \& Technology}, number = {15 (2)}, publisher = {IWA Publishing}, address = {London}, issn = {1751-231X}, doi = {10.2166/wpt.2020.027}, pages = {386 -- 393}, year = {2020}, abstract = {Different analytical approaches exist to describe the structural substance or wear reserve of sewer systems. The aim is to convert engineering assessments of often complex defect patterns into computational algorithms and determine a substance class for a sewer section or manhole. This analytically determined information is essential for strategic rehabilitation planning processes up to network level, as it corresponds to the most appropriate rehabilitation type and can thus provide decision-making support. Current calculation methods differ clearly from each other in parts, so that substance classes determined by the different approaches are only partially comparable with each other. The objective of the German R\&D cooperation project 'SubKanS' is to develop a methodology for classifying the specific defect patterns resulting from the interaction of all the individual defects, and their severities and locations. The methodology takes into account the structural substance of sewer sections and manholes, based on real data and theoretical considerations analogous to the condition classification of individual defects. The result is a catalogue of defect patterns and characteristics, as well as associated structural substance classifications of sewer systems (substance classes). The methodology for sewer system substance classification is developed so that the classification of individual defects can be transferred into a substance class of the sewer section or manhole, eventually taking into account further information (e.g. pipe material, nominal diameter, etc.). The result is a validated methodology for automated sewer system substance classification.}, language = {en} } @article{BienerBoykenSasseetal.1999, author = {Biener, Ernst and Boyken, P. and Sasse, T. and Arnold, J.}, title = {Geotechnical aspects of the construction of the integrated harbour sludge management system in Bremen-Seehausen / P. Boyken ; E. Biener ; T. Sasse ; J. Arnold}, series = {Geotechnical engineering for transportation infrastructure : proceedings of the twelfth European Conference on Soil Mechanics and Geotechnical Engineering, Amsterdam, Netherlands, 7 - 10 June 1999 ; theory and practice, planning and design, construction and maintenance. - Vol. 2}, journal = {Geotechnical engineering for transportation infrastructure : proceedings of the twelfth European Conference on Soil Mechanics and Geotechnical Engineering, Amsterdam, Netherlands, 7 - 10 June 1999 ; theory and practice, planning and design, construction and maintenance. - Vol. 2}, publisher = {Balkema}, address = {Rotterdam}, isbn = {90-5809-049-3}, pages = {909 -- 914}, year = {1999}, language = {en} } @article{ErpicumCrookstonBombardellietal.2021, author = {Erpicum, Sebastien and Crookston, Brian M. and Bombardelli, Fabian and Bung, Daniel Bernhard and Felder, Stefan and Mulligan, Sean and Oertel, Mario and Palermo, Michele}, title = {Hydraulic structures engineering: An evolving science in a changing world}, series = {Wires Water}, volume = {8}, journal = {Wires Water}, number = {2}, publisher = {Wiley}, address = {Weinheim}, issn = {2049-1948}, doi = {10.1002/wat2.1505}, year = {2021}, language = {en} } @article{KuhnhenneRegerPyschnyetal.2020, author = {Kuhnhenne, Markus and Reger, Vitali and Pyschny, Dominik and D{\"o}ring, Bernd}, title = {Influence of airtightness of steel sandwich panel joints on heat losses}, series = {E3S Web of Conferences 12th Nordic Symposium on Building Physics (NSB 2020)}, volume = {172}, journal = {E3S Web of Conferences 12th Nordic Symposium on Building Physics (NSB 2020)}, number = {Art. 05008}, publisher = {EDP Sciences}, address = {Les Ulis}, doi = {10.1051/e3sconf/202017205008}, pages = {6}, year = {2020}, abstract = {Energy saving ordinances requires that buildings must be designed in such a way that the heat transfer surface including the joints is permanently air impermeable. The prefabricated roof and wall panels in lightweight steel constructions are airtight in the area of the steel covering layers. The sealing of the panel joints contributes to fulfil the comprehensive requirements for an airtight building envelope. To improve the airtightness of steel sandwich panels, additional sealing tapes can be installed in the panel joint. The influence of these sealing tapes was evaluated by measurements carried out by the RWTH Aachen University - Sustainable Metal Building Envelopes. Different installation situations were evaluated by carrying out airtightness tests for different joint distances. In addition, the influence on the heat transfer coefficient was also evaluated using the Finite Element Method (FEM). The combination of obtained air volume flow and transmission losses enables to create an "effective heat transfer coefficient" due to transmission and infiltration. This summarizes both effects in one value and is particularly helpful for approximate calculations on energy efficiency.}, language = {en} }