@article{MarxSchenkBehrensetal.2013, author = {Marx, Ulrich and Schenk, Friedrich and Behrens, Jan and Meyr, Ulrike and Wanek, Paul and Zang, Werner and Schmitt, Robert and Br{\"u}stle, Oliver and Zenke, Martin and Klocke, Fritz}, title = {Automatic production of induced pluripotent stem cells}, series = {Procedia CIRP : First CIRP Conference on BioManufacturing}, volume = {Vol. 5}, journal = {Procedia CIRP : First CIRP Conference on BioManufacturing}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8271}, pages = {2 -- 6}, year = {2013}, language = {en} } @article{BorchertHasenbeckJungbluthetal.2009, author = {Borchert, J{\"o}rg and Hasenbeck, Marc and Jungbluth, Christian and Schemm, Ralf}, title = {Bewertung und Steuerung von Gasspeichern bzw. Gasspeicherscheiben}, series = {Zeitschrift f{\"u}r Energiewirtschaft}, volume = {33}, journal = {Zeitschrift f{\"u}r Energiewirtschaft}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {1866-2765}, doi = {10.1007/s12398-009-0033-x}, pages = {279 -- 293}, year = {2009}, abstract = {In diesem Artikel werden zun{\"a}chst einleitend der Gasmarkt Deutschland und der sich daraus ergebende Speicherbedarf skizziert. Folgend wird auf verschiedene Speichernutzen aus betriebswirtschaftlicher Perspektive eingegangen und die in diesem Artikel vorgestellten Bewertungsverfahren einleitend beschrieben. In diesem Artikel werden stochastische Optimierungsmethoden aufgegriffen, die sowohl eine Bewertung der Speicher gegen{\"u}ber einem Spotpreis, als auch gegen{\"u}ber einer gesamten Forwardcurve erm{\"o}glichen. Hierzu werden zun{\"a}chst Modelle zur Beschreibung der Marktpreise vorgestellt und anhand empirischer Daten kalibriert. Dann wird eine beispielhafte Speicherscheibe zun{\"a}chst auf Basis der LeastSquareMonteCarloTechnik gegen{\"u}ber dem stochastischen mehrfaktoriellen Spotpreismodell bewertet. Hieran schließt sich die Vorstellung der Bewertung sowie des Hedgings gegen{\"u}ber der Forwardcurve an. Abschließend erfolgt eine vergleichende Gegen{\"u}berstellung beider Verfahren.}, language = {de} } @article{BorchertHasenbeck2009, author = {Borchert, J{\"o}rg and Hasenbeck, Marc}, title = {Bewertung und Steuerung von Kraftwerksscheiben}, series = {Zeitschrift f{\"u}r Energiewirtschaft}, volume = {33}, journal = {Zeitschrift f{\"u}r Energiewirtschaft}, number = {2}, publisher = {Vieweg}, address = {Wiesbaden}, issn = {1866-2765}, doi = {10.1007/s12398-009-0014-0}, pages = {115 -- 126}, year = {2009}, language = {de} } @article{BorchertSchemm2007, author = {Borchert, J{\"o}rg and Schemm, R.}, title = {Einsatz der Portfoliotheorie im Asset Allokations-Prozess am Beispiel eines fiktiven Anlageraumes von Windkraftstandorten}, series = {Zeitschrift f{\"u}r Energiewirtschaft}, volume = {31}, journal = {Zeitschrift f{\"u}r Energiewirtschaft}, number = {4}, issn = {0343-5377}, pages = {311}, year = {2007}, language = {de} } @article{JungbluthBorchert2008, author = {Jungbluth, Christian and Borchert, J{\"o}rg}, title = {M{\"o}glichkeiten der Strompreisbeeinflussung im oligopolistischen Markt}, series = {ZNER Zeitschrift f{\"u}r Neues Energierecht}, journal = {ZNER Zeitschrift f{\"u}r Neues Energierecht}, number = {4}, pages = {314 -- 323}, year = {2008}, language = {de} } @article{WalterBorchert2002, author = {Walter, G. and Borchert, J{\"o}rg}, title = {Der Einsatz von Realoptionen in der Elektrizit{\"a}tswirtschaft}, series = {M \& A Review}, journal = {M \& A Review}, number = {4}, issn = {1616-0878}, pages = {198}, year = {2002}, language = {de} } @article{KuperjansWeitzel2015, author = {Kuperjans, Isabel and Weitzel, J.}, title = {Energiedesign 2020 : Sichere Strom- und W{\"a}rmeversorgung f{\"u}r die Industrie}, series = {TAB: das Fachmedium der TGA-Branche}, journal = {TAB: das Fachmedium der TGA-Branche}, number = {3}, publisher = {Bauverlag}, address = {G{\"u}tersloh}, issn = {0341-2032}, pages = {105 -- 107}, year = {2015}, language = {de} } @article{KahmannRauschPluemeretal.2022, author = {Kahmann, Stephanie L. and Rausch, Valentin and Pl{\"u}mer, Jonathan and M{\"u}ller, Lars P. and Pieper, Martin and Wegmann, Kilian}, title = {The automized fracture edge detection and generation of three-dimensional fracture probability heat maps}, series = {Medical Engineering \& Physics}, volume = {2022}, journal = {Medical Engineering \& Physics}, number = {110}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1350-4533}, pages = {7 Seiten}, year = {2022}, abstract = {With proven impact of statistical fracture analysis on fracture classifications, it is desirable to minimize the manual work and to maximize repeatability of this approach. We address this with an algorithm that reduces the manual effort to segmentation, fragment identification and reduction. The fracture edge detection and heat map generation are performed automatically. With the same input, the algorithm always delivers the same output. The tool transforms one intact template consecutively onto each fractured specimen by linear least square optimization, detects the fragment edges in the template and then superimposes them to generate a fracture probability heat map. We hypothesized that the algorithm runs faster than the manual evaluation and with low (< 5 mm) deviation. We tested the hypothesis in 10 fractured proximal humeri and found that it performs with good accuracy (2.5 mm ± 2.4 mm averaged Euclidean distance) and speed (23 times faster). When applied to a distal humerus, a tibia plateau, and a scaphoid fracture, the run times were low (1-2 min), and the detected edges correct by visual judgement. In the geometrically complex acetabulum, at a run time of 78 min some outliers were considered acceptable. An automatically generated fracture probability heat map based on 50 proximal humerus fractures matches the areas of high risk of fracture reported in medical literature. Such automation of the fracture analysis method is advantageous and could be extended to reduce the manual effort even further.}, language = {en} } @article{BlockViebahnJungbluth2024, author = {Block, Simon and Viebahn, Peter and Jungbluth, Christian}, title = {Analysing direct air capture for enabling negative emissions in Germany: an assessment of the resource requirements and costs of a potential rollout in 2045}, series = {Frontiers in Climate}, volume = {6}, journal = {Frontiers in Climate}, publisher = {Frontiers}, address = {Lausanne}, issn = {2624-9553}, doi = {10.3389/fclim.2024.1353939}, pages = {18 Seiten}, year = {2024}, abstract = {Direct air capture (DAC) combined with subsequent storage (DACCS) is discussed as one promising carbon dioxide removal option. The aim of this paper is to analyse and comparatively classify the resource consumption (land use, renewable energy and water) and costs of possible DAC implementation pathways for Germany. The paths are based on a selected, existing climate neutrality scenario that requires the removal of 20 Mt of carbon dioxide (CO2) per year by DACCS from 2045. The analysis focuses on the so-called "low-temperature" DAC process, which might be more advantageous for Germany than the "high-temperature" one. In four case studies, we examine potential sites in northern, central and southern Germany, thereby using the most suitable renewable energies for electricity and heat generation. We show that the deployment of DAC results in large-scale land use and high energy needs. The land use in the range of 167-353 km2 results mainly from the area required for renewable energy generation. The total electrical energy demand of 14.4 TWh per year, of which 46\% is needed to operate heat pumps to supply the heat demand of the DAC process, corresponds to around 1.4\% of Germany's envisaged electricity demand in 2045. 20 Mt of water are provided yearly, corresponding to 40\% of the city of Cologne's water demand (1.1 million inhabitants). The capture of CO2 (DAC) incurs levelised costs of 125-138 EUR per tonne of CO2, whereby the provision of the required energy via photovoltaics in southern Germany represents the lowest value of the four case studies. This does not include the costs associated with balancing its volatility. Taking into account transporting the CO2 via pipeline to the port of Wilhelmshaven, followed by transporting and sequestering the CO2 in geological storage sites in the Norwegian North Sea (DACCS), the levelised costs increase to 161-176 EUR/tCO2. Due to the longer transport distances from southern and central Germany, a northern German site using wind turbines would be the most favourable.}, language = {en} } @article{EdipSesovButenwegetal.2018, author = {Edip, K. and Sesov, V. and Butenweg, Christoph and Bojadjieva, J.}, title = {Development of coupled numerical model for simulation of multiphase soil}, series = {Computers and Geotechnics}, volume = {96}, journal = {Computers and Geotechnics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0266-352X}, doi = {10.1016/j.compgeo.2017.08.016}, pages = {118 -- 131}, year = {2018}, abstract = {In this paper, a coupled multiphase model considering both non-linearities of water retention curves and solid state modeling is proposed. The solid displacements and the pressures of both water and air phases are unknowns of the proposed model. The finite element method is used to solve the governing differential equations. The proposed method is demonstrated through simulation of seepage test and partially consolidation problem. Then, implementation of the model is done by using hypoplasticity for the solid phase and analyzing the fully saturated triaxial experiments. In integration of the constitutive law error controlling is improved and comparisons done accordingly. In this work, the advantages and limitations of the numerical model are discussed.}, language = {en} }