@article{HonarvarfardGamellaPoghossianetal.2017, author = {Honarvarfard, Elham and Gamella, Maria and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Katz, Evgeny}, title = {An enzyme-based reversible Controlled NOT (CNOT) logic gate operating on a semiconductor transducer}, series = {Applied Materials Today}, volume = {9}, journal = {Applied Materials Today}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-9407}, doi = {10.1016/j.apmt.2017.08.003}, pages = {266 -- 270}, year = {2017}, abstract = {An enzyme-based biocatalytic system mimicking operation of a logically reversible Controlled NOT (CNOT) gate has been interfaced with semiconductor electronic transducers. Electrolyte-insulator-semiconductor (EIS) structures have been used to transduce chemical changes produced by the enzyme system to an electronically readable capacitive output signal using field-effect features of the EIS device. Two enzymes, urease and esterase, were immobilized on the insulating interface of EIS structure producing local pH changes performing XOR logic operation controlled by various combinations of the input signals represented by urea and ethyl butyrate. Another EIS transducer was functionalized with esterase only, thus performing Identity (ID) logic operation for the ethyl butyrate input. Both semiconductor devices assembled in parallel operated as a logically reversible CNOT gate. The present system, despite its simplicity, demonstrated for the first time logically reversible function of the enzyme system transduced electronically with the semiconductor devices. The biomolecular realization of a CNOT gate interfaced with semiconductors is promising for integration into complex biomolecular networks and future biosensor/biomedical applications.}, language = {en} } @article{YoshinobuEckenPoghossianetal.2001, author = {Yoshinobu, T. and Ecken, H. and Poghossian, Arshak and Simonis, A. and Iwasaki, H. and L{\"u}th, H. and Sch{\"o}ning, Michael Josef}, title = {Constant-current-mode LAPS (CLAPS) for the detection of penicillin}, series = {Electroanalysis. 13 (2001), H. 8-9}, journal = {Electroanalysis. 13 (2001), H. 8-9}, isbn = {1040-0397}, pages = {733 -- 736}, year = {2001}, language = {en} } @article{PoghossianAbouzarSchoening2008, author = {Poghossian, Arshak and Abouzar, Maryam H. and Sch{\"o}ning, Michael Josef}, title = {Capacitance-voltage and impedance characteristics of field-effect EIS sensors functionalised with polyelectrolyte multilayers}, series = {IRBM. 29 (2008), H. 2-3}, journal = {IRBM. 29 (2008), H. 2-3}, isbn = {1959-0318}, pages = {149 -- 154}, year = {2008}, language = {en} } @article{PoghossianLuethSchultzeetal.2001, author = {Poghossian, Arshak and L{\"u}th, H. and Schultze, J. W. and Sch{\"o}ning, Michael Josef}, title = {(Bio-)chemical and physical microsensor array using an identical transducer principle}, series = {Scaling down in electrochemistry : electrochemical micro- and nanosystem technology ; proceedings of the 3rd International Symposium on Electrochemical Microsystem Technologies, Garmisch-Patenkirchen, Germany, 11 - 15 September 2000 / ed. by J. W. Schultz}, journal = {Scaling down in electrochemistry : electrochemical micro- and nanosystem technology ; proceedings of the 3rd International Symposium on Electrochemical Microsystem Technologies, Garmisch-Patenkirchen, Germany, 11 - 15 September 2000 / ed. by J. W. Schultz}, publisher = {Elsevier [u.a.]}, address = {Amsterdam [u.a.]}, isbn = {0-08-044014-2}, pages = {243 -- 249}, year = {2001}, language = {en} } @article{SchoeningPoghossian2006, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak}, title = {BioFEDs (field-effect devices) : State-of-the-art and new directions}, series = {Electroanalysis}, volume = {18}, journal = {Electroanalysis}, number = {19-20}, issn = {1521-4109}, doi = {10.1002/elan.200603609}, pages = {1893 -- 1900}, year = {2006}, language = {en} } @article{HuckPoghossianKerroumietal.2014, author = {Huck, Christina and Poghossian, Arshak and Kerroumi, Iman and Schusser, Sebastian and B{\"a}cker, Matthias and Zander, Willi and Schubert, J{\"u}rgen and Buniatyan, Vahe V. and Martirosyan, Norayr W. and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Multiparameter sensor chip with Barium Strontium Titanate as multipurpose material}, series = {Electroanalysis}, volume = {26}, journal = {Electroanalysis}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109 (E-Journal); 1040-0397 (Print)}, doi = {10.1002/elan.201400076}, pages = {980 -- 987}, year = {2014}, abstract = {It is well known that biochemical and biotechnological processes are strongly dependent and affected by a variety of physico-chemical parameters such as pH value, temperature, pressure and electrolyte conductivity. Therefore, these quantities have to be monitored or controlled in order to guarantee a stable process operation, optimization and high yield. In this work, a sensor chip for the multiparameter detection of three physico-chemical parameters such as electrolyte conductivity, pH and temperature is realized using barium strontium titanate (BST) as multipurpose material. The chip integrates a capacitively coupled four-electrode electrolyte-conductivity sensor, a capacitive field-effect pH sensor and a thin-film Pt-temperature sensor. Due to the multifunctional properties of BST, it is utilized as final outermost coating layer of the processed sensor chip and serves as passivation and protection layer as well as pH-sensitive transducer material at the same time. The results of testing of the individual sensors of the developed multiparameter sensor chip are presented. In addition, a quasi-simultaneous multiparameter characterization of the sensor chip in buffer solutions with different pH value and electrolyte conductivity is performed. To study the sensor behavior and the suitability of BST as multifunctional material under harsh environmental conditions, the sensor chip was exemplarily tested in a biogas digestate.}, language = {en} } @article{RolkaPoghossianSchoening2004, author = {Rolka, David and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Integration of a capacitive EIS sensor into a FIA system for pH and penicillin determination}, series = {Sensors. 4 (2004)}, journal = {Sensors. 4 (2004)}, isbn = {1424-8220}, pages = {84 -- 94}, year = {2004}, language = {en} } @article{PoghossianSchoening2004, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Detecting Both Physical and (Bio-)Chemical Parameters by Means of ISFET Devices}, series = {Electroanalysis. 16 (2004), H. 22}, journal = {Electroanalysis. 16 (2004), H. 22}, isbn = {1040-0397}, pages = {1863 -- 1872}, year = {2004}, language = {en} } @article{SchifferFerreinLakemeyer2012, author = {Schiffer, Stefan and Ferrein, Alexander and Lakemeyer, Gerhard}, title = {Caesar: an intelligent domestic service robot}, series = {Intelligent service robotics}, volume = {5}, journal = {Intelligent service robotics}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {1861-2776}, doi = {10.1007/s11370-012-0118-y}, pages = {259 -- 276}, year = {2012}, abstract = {In this paper we present CAESAR, an intelligent domestic service robot. In domestic settings for service robots complex tasks have to be accomplished. Those tasks benefit from deliberation, from robust action execution and from flexible methods for human-robot interaction that account for qualitative notions used in natural language as well as human fallibility. Our robot CAESAR deploys AI techniques on several levels of its system architecture. On the low-level side, system modules for localization or navigation make, for instance, use of path-planning methods, heuristic search, and Bayesian filters. For face recognition and human-machine interaction, random trees and well-known methods from natural language processing are deployed. For deliberation, we use the robot programming and plan language READYLOG, which was developed for the high-level control of agents and robots; it allows combining programming the behaviour using planning to find a course of action. READYLOG is a variant of the robot programming language Golog. We extended READYLOG to be able to cope with qualitative notions of space frequently used by humans, such as "near" and "far". This facilitates human-robot interaction by bridging the gap between human natural language and the numerical values needed by the robot. Further, we use READYLOG to increase the flexible interpretation of human commands with decision-theoretic planning. We give an overview of the different methods deployed in CAESAR and show the applicability of a system equipped with these AI techniques in domestic service robotics}, language = {en} } @article{SiqueiraAbouzarPoghossianetal.2009, author = {Siqueira, Jos{\´e} R. Jr. and Abouzar, Maryam H. and Poghossian, Arshak and Zucolotto, Valtencir and Oliveira, Osvaldo N. Jr. and Sch{\"o}ning, Michael Josef}, title = {Penicillin biosensor based on a capacitive field-effect structure functionalized with a dendrimer/carbon nanotube multilayer}, series = {Biosensors and Bioelectronics. 25 (2009), H. 2}, journal = {Biosensors and Bioelectronics. 25 (2009), H. 2}, isbn = {0956-5663}, pages = {497 -- 501}, year = {2009}, language = {en} }