@article{BaringhausGaigall2019, author = {Baringhaus, Ludwig and Gaigall, Daniel}, title = {On an asymptotic relative efficiency concept based on expected volumes of confidence regions}, series = {Statistics - A Journal of Theoretical and Applied Statistic}, volume = {53}, journal = {Statistics - A Journal of Theoretical and Applied Statistic}, number = {6}, publisher = {Taylor \& Francis}, address = {London}, issn = {1029-4910}, doi = {10.1080/02331888.2019.1683560}, pages = {1396 -- 1436}, year = {2019}, abstract = {The paper deals with an asymptotic relative efficiency concept for confidence regions of multidimensional parameters that is based on the expected volumes of the confidence regions. Under standard conditions the asymptotic relative efficiencies of confidence regions are seen to be certain powers of the ratio of the limits of the expected volumes. These limits are explicitly derived for confidence regions associated with certain plugin estimators, likelihood ratio tests and Wald tests. Under regularity conditions, the asymptotic relative efficiency of each of these procedures with respect to each one of its competitors is equal to 1. The results are applied to multivariate normal distributions and multinomial distributions in a fairly general setting.}, language = {en} } @article{BaringhausGaigall2015, author = {Baringhaus, Ludwig and Gaigall, Daniel}, title = {On an independence test approach to the goodness-of-fit problem}, series = {Journal of Multivariate Analysis}, volume = {2015}, journal = {Journal of Multivariate Analysis}, number = {140}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0047-259X}, doi = {10.1016/j.jmva.2015.05.013}, pages = {193 -- 208}, year = {2015}, abstract = {Let X₁,…,Xₙ be independent and identically distributed random variables with distribution F. Assuming that there are measurable functions f:R²→R and g:R²→R characterizing a family F of distributions on the Borel sets of R in the way that the random variables f(X₁,X₂),g(X₁,X₂) are independent, if and only if F∈F, we propose to treat the testing problem H:F∈F,K:F∉F by applying a consistent nonparametric independence test to the bivariate sample variables (f(Xᵢ,Xⱼ),g(Xᵢ,Xⱼ)),1⩽i,j⩽n,i≠j. A parametric bootstrap procedure needed to get critical values is shown to work. The consistency of the test is discussed. The power performance of the procedure is compared with that of the classical tests of Kolmogorov-Smirnov and Cram{\´e}r-von Mises in the special cases where F is the family of gamma distributions or the family of inverse Gaussian distributions.}, language = {en} } @article{KlingeOttoMuehl2015, author = {Klinge, Uwe and Otto, Jens and M{\"u}hl, Thomas}, title = {High Structural Stability of Textile Implants Prevents Pore Collapse and Preserves Effective Porosity at Strain}, series = {BioMed Research International}, volume = {2015}, journal = {BioMed Research International}, issn = {2314-6133 (Print)}, doi = {10.1155/2015/953209}, pages = {7 pages}, year = {2015}, language = {en} } @article{FrauenrathNiendorfKob2008, author = {Frauenrath, Tobias and Niendorf, Thoralf and Kob, Malte}, title = {Acoustic method for synchronization of Magnetic Resonance Imaging (MRI)}, series = {Acta Acustica}, volume = {94}, journal = {Acta Acustica}, number = {1}, publisher = {Hirzel}, address = {Stuttgart}, issn = {1861-9959}, doi = {10.3813/AAA.918017}, pages = {148 -- 155}, year = {2008}, abstract = {Magnetic Resonance Imaging (MRI) of moving organs requires synchronization with physiological motion or flow, which dictate the viable window for data acquisition. To meet this challenge, this study proposes an acoustic gating device (ACG) that employs acquisition and processing of acoustic signals for synchronization while providing MRI compatibility, immunity to interferences with electro-magnetic and acoustic fields and suitability for MRI at high magnetic field strengths. The applicability and robustness of the acoustic gating approach is examined in a pilot study, where it substitutes conventional ECG-gating for cardiovascular MR. The merits and limitations of the ACG approach are discussed. Implications for MR imaging in the presence of physiological motion are considered including synchronization with other structure- or motion borne sounds.}, language = {en} } @article{MaurerRiekeSchemmetal.2023, author = {Maurer, Florian and Rieke, Christian and Schemm, Ralf and Stollenwerk, Dominik}, title = {Analysis of an urban grid with high photovoltaic and e-mobility penetration}, series = {Energies}, volume = {16}, journal = {Energies}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en16083380}, pages = {18 Seiten}, year = {2023}, abstract = {This study analyses the expected utilization of an urban distribution grid under high penetration of photovoltaic and e-mobility with charging infrastructure on a residential level. The grid utilization and the corresponding power flow are evaluated, while varying the control strategies and photovoltaic installed capacity in different scenarios. Four scenarios are used to analyze the impact of e-mobility. The individual mobility demand is modelled based on the largest German studies on mobility "Mobilit{\"a}t in Deutschland", which is carried out every 5 years. To estimate the ramp-up of photovoltaic generation, a potential analysis of the roof surfaces in the supply area is carried out via an evaluation of an open solar potential study. The photovoltaic feed-in time series is derived individually for each installed system in a resolution of 15 min. The residential consumption is estimated using historical smart meter data, which are collected in London between 2012 and 2014. For a realistic charging demand, each residential household decides daily on the state of charge if their vehicle requires to be charged. The resulting charging time series depends on the underlying behavior scenario. Market prices and mobility demand are therefore used as scenario input parameters for a utility function based on the current state of charge to model individual behavior. The aggregated electricity demand is the starting point of the power flow calculation. The evaluation is carried out for an urban region with approximately 3100 residents. The analysis shows that increased penetration of photovoltaics combined with a flexible and adaptive charging strategy can maximize PV usage and reduce the need for congestion-related intervention by the grid operator by reducing the amount of kWh charged from the grid by 30\% which reduces the average price of a charged kWh by 35\% to 14 ct/kWh from 21.8 ct/kWh without PV optimization. The resulting grid congestions are managed by implementing an intelligent price or control signal. The analysis took place using data from a real German grid with 10 subgrids. The entire software can be adapted for the analysis of different distribution grids and is publicly available as an open-source software library on GitHub.}, language = {en} } @article{ClaerFerreinSchiffer2019, author = {Claer, Mario and Ferrein, Alexander and Schiffer, Stefan}, title = {Calibration of a Rotating or Revolving Platform with a LiDAR Sensor}, series = {Applied Sciences}, volume = {Volume 9}, journal = {Applied Sciences}, number = {issue 11, 2238}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app9112238}, pages = {18 Seiten}, year = {2019}, language = {en} } @article{KahmannRauschPluemeretal.2022, author = {Kahmann, Stephanie L. and Rausch, Valentin and Pl{\"u}mer, Jonathan and M{\"u}ller, Lars P. and Pieper, Martin and Wegmann, Kilian}, title = {The automized fracture edge detection and generation of three-dimensional fracture probability heat maps}, series = {Medical Engineering \& Physics}, volume = {2022}, journal = {Medical Engineering \& Physics}, number = {110}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1350-4533}, pages = {7 Seiten}, year = {2022}, abstract = {With proven impact of statistical fracture analysis on fracture classifications, it is desirable to minimize the manual work and to maximize repeatability of this approach. We address this with an algorithm that reduces the manual effort to segmentation, fragment identification and reduction. The fracture edge detection and heat map generation are performed automatically. With the same input, the algorithm always delivers the same output. The tool transforms one intact template consecutively onto each fractured specimen by linear least square optimization, detects the fragment edges in the template and then superimposes them to generate a fracture probability heat map. We hypothesized that the algorithm runs faster than the manual evaluation and with low (< 5 mm) deviation. We tested the hypothesis in 10 fractured proximal humeri and found that it performs with good accuracy (2.5 mm ± 2.4 mm averaged Euclidean distance) and speed (23 times faster). When applied to a distal humerus, a tibia plateau, and a scaphoid fracture, the run times were low (1-2 min), and the detected edges correct by visual judgement. In the geometrically complex acetabulum, at a run time of 78 min some outliers were considered acceptable. An automatically generated fracture probability heat map based on 50 proximal humerus fractures matches the areas of high risk of fracture reported in medical literature. Such automation of the fracture analysis method is advantageous and could be extended to reduce the manual effort even further.}, language = {en} } @article{EngelmannSimsekShalabyetal.2024, author = {Engelmann, Ulrich M. and Simsek, Beril and Shalaby, Ahmed and Krause, Hans-Joachim}, title = {Key contributors to signal generation in frequency mixing magnetic detection (FMMD): an in silico study}, series = {Sensors}, volume = {24}, journal = {Sensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s24061945}, pages = {Artikel 1945}, year = {2024}, abstract = {Frequency mixing magnetic detection (FMMD) is a sensitive and selective technique to detect magnetic nanoparticles (MNPs) serving as probes for binding biological targets. Its principle relies on the nonlinear magnetic relaxation dynamics of a particle ensemble interacting with a dual frequency external magnetic field. In order to increase its sensitivity, lower its limit of detection and overall improve its applicability in biosensing, matching combinations of external field parameters and internal particle properties are being sought to advance FMMD. In this study, we systematically probe the aforementioned interaction with coupled N{\´e}el-Brownian dynamic relaxation simulations to examine how key MNP properties as well as applied field parameters affect the frequency mixing signal generation. It is found that the core size of MNPs dominates their nonlinear magnetic response, with the strongest contributions from the largest particles. The drive field amplitude dominates the shape of the field-dependent response, whereas effective anisotropy and hydrodynamic size of the particles only weakly influence the signal generation in FMMD. For tailoring the MNP properties and parameters of the setup towards optimal FMMD signal generation, our findings suggest choosing large particles of core sizes dc > 25 nm nm with narrow size distributions (σ < 0.1) to minimize the required drive field amplitude. This allows potential improvements of FMMD as a stand-alone application, as well as advances in magnetic particle imaging, hyperthermia and magnetic immunoassays.}, language = {en} } @article{HorbachStaat2018, author = {Horbach, Andreas and Staat, Manfred}, title = {Optical strain measurement for the modeling of surgical meshes and their porosity}, series = {Current Directions in Biomedical Engineering}, volume = {Band 4}, journal = {Current Directions in Biomedical Engineering}, number = {1}, publisher = {De Gruyter}, address = {Berlin}, issn = {2364-5504}, doi = {10.1515/cdbme-2018-0045}, pages = {181 -- 184}, year = {2018}, abstract = {The porosity of surgical meshes makes them flexible for large elastic deformation and establishes the healing conditions of good tissue in growth. The biomechanic modeling of orthotropic and compressible materials requires new materials models and simulstaneoaus fit of deformation in the load direction as well as trannsversely to to load. This nonlinear modeling can be achieved by an optical deformation measurement. At the same time the full field deformation measurement allows the dermination of the change of porosity with deformation. Also the socalled effective porosity, which has been defined to asses the tisssue interatcion with the mesh implants, can be determined from the global deformation of the surgical meshes.}, language = {en} } @article{SchoeningArzdorfMulchandanietal.2003, author = {Sch{\"o}ning, Michael Josef and Arzdorf, Michael and Mulchandani, P. and Chen, W. and Mulchandani, A.}, title = {Towards a capacitive enzyme sensor for direct determination of organophosphorus pesticides: Fundamentals studies and aspects of development}, series = {Sensors. 3 (2003), H. 6}, journal = {Sensors. 3 (2003), H. 6}, isbn = {1424-8220}, pages = {119 -- 127}, year = {2003}, language = {en} }