@article{MorandiButenwegBreisetal.2022, author = {Morandi, Paolo and Butenweg, Christoph and Breis, Khaled and Beyer, Katrin and Magenes, Guido}, title = {Latest findings on the behaviour factor q for the seismic design of URM buildings}, series = {Bulletin of Earthquake Engineering}, volume = {20}, journal = {Bulletin of Earthquake Engineering}, number = {11}, editor = {Ansal, Atilla}, publisher = {Springer Nature}, address = {Cham}, issn = {1573-1456}, doi = {10.1007/s10518-022-01419-7}, pages = {5797 -- 5848}, year = {2022}, abstract = {Recent earthquakes as the 2012 Emilia earthquake sequence showed that recently built unreinforced masonry (URM) buildings behaved much better than expected and sustained, despite the maximum PGA values ranged between 0.20-0.30 g, either minor damage or structural damage that is deemed repairable. Especially low-rise residential and commercial masonry buildings with a code-conforming seismic design and detailing behaved in general very well without substantial damages. The low damage grades of modern masonry buildings that was observed during this earthquake series highlighted again that codified design procedures based on linear analysis can be rather conservative. Although advances in simulation tools make nonlinear calculation methods more readily accessible to designers, linear analyses will still be the standard design method for years to come. The present paper aims to improve the linear seismic design method by providing a proper definition of the q-factor of URM buildings. These q-factors are derived for low-rise URM buildings with rigid diaphragms which represent recent construction practise in low to moderate seismic areas of Italy and Germany. The behaviour factor components for deformation and energy dissipation capacity and for overstrength due to the redistribution of forces are derived by means of pushover analyses. Furthermore, considerations on the behaviour factor component due to other sources of overstrength in masonry buildings are presented. As a result of the investigations, rationally based values of the behaviour factor q to be used in linear analyses in the range of 2.0-3.0 are proposed.}, language = {en} } @article{SchererKratzSchaedeletal.1988, author = {Scherer, Ulrich W. and Kratz, J. V. and Sch{\"a}del, M. and Br{\"u}chle, W.}, title = {Lawrencium Chemistry: No Evidence for Oxidation States Lower than 3+ in Aqueous Solution / U.W. Scherer, J.V. Kratz, M. Sch{\"a}del, W. Br{\"u}chle, K.E. Gregorich, R.A. Henderson, D. Lee, M. Nurmia, D.C. Hoffman}, series = {Inorganica Chimica Acta. 146 (1988)}, journal = {Inorganica Chimica Acta. 146 (1988)}, isbn = {0020-1693}, pages = {249 -- 254}, year = {1988}, language = {en} } @article{Foerster2003, author = {F{\"o}rster, Arnold}, title = {Layer Deposition I}, series = {Fundamentals of nanoelectronics / Stefan Bl{\"u}gel ... (ed.). - (Lecture manuscripts of the ... Spring School of the Department of Solid State Research ; 34). - (Schriften des Forschungszentrums J{\"u}lich : Materie und Material ; 14 ; 34)}, journal = {Fundamentals of nanoelectronics / Stefan Bl{\"u}gel ... (ed.). - (Lecture manuscripts of the ... Spring School of the Department of Solid State Research ; 34). - (Schriften des Forschungszentrums J{\"u}lich : Materie und Material ; 14 ; 34)}, publisher = {Forschungszentrum, Zentralbibliothek}, address = {J{\"u}lich}, isbn = {3-89336-319-X}, pages = {C2.1 -- C2.13}, year = {2003}, language = {en} } @article{SiqueiraWernerBaeckeretal.2009, author = {Siqueira, Jose R. and Werner, Frederik and B{\"a}cker, Matthias and Poghossian, Arshak and Zucolotto, Valtencir and Oliveira, Osvaldo N. Jr. and Sch{\"o}ning, Michael Josef}, title = {Layer-by-Layer Assembly of Carbon Nanotubes Incorporated in Light-Addressable Potentiometric Sensors}, series = {Journal of Physical Chemistry C. 113 (2009), H. 33}, journal = {Journal of Physical Chemistry C. 113 (2009), H. 33}, publisher = {American Chemical Society}, address = {Washington, DC}, isbn = {1932-7455}, pages = {14765 -- 14770}, year = {2009}, language = {en} } @article{MoraisSumanSchoeningetal.2023, author = {Morais, Paulo V. and Suman, Pedro H. and Sch{\"o}ning, Michael Josef and Siqueira Junior, Jos{\´e} R. and Orlandi, Marcelo O.}, title = {Layer-by-layer film based on Sn₃O₄ nanobelts as sensing units to detect heavy metals using a capacitive field-effect sensor platform}, series = {Chemosensors}, volume = {11}, journal = {Chemosensors}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors11080436}, pages = {Artikel 436}, year = {2023}, abstract = {Lead and nickel, as heavy metals, are still used in industrial processes, and are classified as "environmental health hazards" due to their toxicity and polluting potential. The detection of heavy metals can prevent environmental pollution at toxic levels that are critical to human health. In this sense, the electrolyte-insulator-semiconductor (EIS) field-effect sensor is an attractive sensing platform concerning the fabrication of reusable and robust sensors to detect such substances. This study is aimed to fabricate a sensing unit on an EIS device based on Sn₃O₄ nanobelts embedded in a polyelectrolyte matrix of polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) using the layer-by-layer (LbL) technique. The EIS-Sn₃O₄ sensor exhibited enhanced electrochemical performance for detecting Pb²⁺ and Ni²⁺ ions, revealing a higher affinity for Pb²⁺ ions, with sensitivities of ca. 25.8 mV/decade and 2.4 mV/decade, respectively. Such results indicate that Sn₃O₄ nanobelts can contemplate a feasible proof-of-concept capacitive field-effect sensor for heavy metal detection, envisaging other future studies focusing on environmental monitoring.}, language = {en} } @article{BhattaraiMayStaatetal.2022, author = {Bhattarai, Aroj and May, Charlotte Anabell and Staat, Manfred and Kowalczyk, Wojciech and Tran, Thanh Ngoc}, title = {Layer-specific damage modeling of porcine large intestine under biaxial tension}, series = {Bioengineering}, volume = {9}, journal = {Bioengineering}, number = {10, Early Access}, publisher = {MDPI}, address = {Basel}, issn = {2306-5354}, doi = {10.3390/bioengineering9100528}, pages = {1 -- 17}, year = {2022}, abstract = {The mechanical behavior of the large intestine beyond the ultimate stress has never been investigated. Stretching beyond the ultimate stress may drastically impair the tissue microstructure, which consequently weakens its healthy state functions of absorption, temporary storage, and transportation for defecation. Due to closely similar microstructure and function with humans, biaxial tensile experiments on the porcine large intestine have been performed in this study. In this paper, we report hyperelastic characterization of the large intestine based on experiments in 102 specimens. We also report the theoretical analysis of the experimental results, including an exponential damage evolution function. The fracture energies and the threshold stresses are set as damage material parameters for the longitudinal muscular, the circumferential muscular and the submucosal collagenous layers. A biaxial tensile simulation of a linear brick element has been performed to validate the applicability of the estimated material parameters. The model successfully simulates the biomechanical response of the large intestine under physiological and non-physiological loads.}, language = {en} } @article{StarkeDrews1994, author = {Starke, G{\"u}nther and Drews, P.}, title = {Le soudage au siecle de l'informatique}, series = {Souder. 18 (1994), H. 6}, journal = {Souder. 18 (1994), H. 6}, isbn = {0246-1900}, pages = {33 -- 44}, year = {1994}, language = {en} } @article{MuellerVeggianDeNardoBalbinotetal.2005, author = {M{\"u}ller-Veggian, Mattea and De Nardo, L. and Balbinot, G. and Colautti, P.}, title = {Leak Microstructures Operation at low pressure of propane: application at the Trigger\&Anti-Trigger system of the STARTRACK Experiment}, series = {Annual report / Istituto Nazionale di Fisica Nucleare, LNL, Laboratori Nazionali di Legnaro. 2004 (2005)}, journal = {Annual report / Istituto Nazionale di Fisica Nucleare, LNL, Laboratori Nazionali di Legnaro. 2004 (2005)}, isbn = {88-7337-008-X}, pages = {242 -- 243}, year = {2005}, language = {en} } @article{FerreinKonurLakemeyer2004, author = {Ferrein, Alexander and Konur, Savas and Lakemeyer, Gerhard}, title = {Learning Decision Trees for Action Selection in Soccer Agents / Konur, Savas ; Ferrein, Alexander ; Lakemeyer, Gerhard}, pages = {1 -- 7}, year = {2004}, language = {en} } @article{Fabo2002, author = {Fabo, Sabine}, title = {Learning from Brachelen}, series = {Freistil (Boxhorn ; 8)}, journal = {Freistil (Boxhorn ; 8)}, publisher = {FH Aachen, Fachbereich Gestaltung}, address = {Aachen}, pages = {2,1 -- 2,31}, year = {2002}, language = {en} }