@article{WittmannFortezza1992, author = {Wittmann, Klaus and Fortezza, R.}, title = {Telescience opportunities in the precursor flights}, series = {Space Technology - Industrial and Commercial Applications. 13 (1992), H. 2}, journal = {Space Technology - Industrial and Commercial Applications. 13 (1992), H. 2}, isbn = {0892-9270}, pages = {221 -- 226}, year = {1992}, language = {en} } @article{KaemperSchmittGuentherodt1990, author = {K{\"a}mper, Klaus-Peter and Schmitt, W. and G{\"u}ntherodt, G.}, title = {Temperature and wave-vector dependence of the spin-split band structure of Ni(111) along the \&\#915;-L line}, series = {Physical Review B. 42 (1990), H. 16}, journal = {Physical Review B. 42 (1990), H. 16}, isbn = {1095-3795}, pages = {10696 -- 10705}, year = {1990}, language = {en} } @article{KaemperSchmittGuentherodt1988, author = {K{\"a}mper, Klaus-Peter and Schmitt, W. and G{\"u}ntherodt, G.}, title = {Temperature dependence of the exchange splitting of Ni along the \&\#61511;-L line}, series = {Journal de physique. 49 (1988), H. 12. Supplement, Colloque C8}, journal = {Journal de physique. 49 (1988), H. 12. Supplement, Colloque C8}, pages = {39 -- 40}, year = {1988}, language = {en} } @article{MottaghyVosteenSchellschmidt2008, author = {Mottaghy, Darius and Vosteen, Hans-Dieter and Schellschmidt, R{\"u}diger}, title = {Temperature dependence of the relationship of thermal diffusivity versus thermal conductivity for crystalline rocks}, series = {International Journal of Earth Sciences}, volume = {97}, journal = {International Journal of Earth Sciences}, number = {2}, issn = {1437-3262}, doi = {10.1007/s00531-007-0238-3}, pages = {435 -- 442}, year = {2008}, language = {en} } @article{SeefeldtDachwald2021, author = {Seefeldt, Patric and Dachwald, Bernd}, title = {Temperature increase on folded solar sail membranes}, series = {Advances in Space Research}, volume = {67}, journal = {Advances in Space Research}, number = {9}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, doi = {10.1016/j.asr.2020.09.026}, pages = {2688 -- 2695}, year = {2021}, language = {en} } @article{BohnFunkeGier1999, author = {Bohn, D. and Funke, Harald and Gier, J.}, title = {Temperature jet development in a cross-over channel}, series = {Third European Conference on Turbomachinery - fluid dynamics and thermodynamics : : 2 - 5 March 1999, Royal National Hotel, London, UK / organized by the Energy Transfer and Thermofluid Mechanics Group of the Institution of Mechanical Engineers (IMechE); with support and sponsorship from European Commission / Vol. B.}, journal = {Third European Conference on Turbomachinery - fluid dynamics and thermodynamics : : 2 - 5 March 1999, Royal National Hotel, London, UK / organized by the Energy Transfer and Thermofluid Mechanics Group of the Institution of Mechanical Engineers (IMechE); with support and sponsorship from European Commission / Vol. B.}, publisher = {Professional Engineering Publ.}, address = {Bury St. Edmunds}, pages = {671 -- 680}, year = {1999}, language = {en} } @article{ArtmannKelemenChien2001, author = {Artmann, Gerhard and Kelemen, C. and Chien, S.}, title = {Temperature transition of human hemoglobin at body temperature: effects of calcium. Kelemen, C.; Chien, S.; Artmann, Gerhard Michael}, series = {Biophysical journal. 80 (2001), H. 6}, journal = {Biophysical journal. 80 (2001), H. 6}, isbn = {1542-0086}, pages = {2622 -- 2630}, year = {2001}, language = {en} } @article{ArtmannKelemenPorstetal.1998, author = {Artmann, Gerhard and Kelemen, Christina and Porst, Dariusz and B{\"u}ldt, G. [u.a.]}, title = {Temperature transitions of protein properties in human red blood cells. Artmann, Gerhard Michael, Kelemen, Christina; Porst, D.; B{\"u}ldt, G.; Chien, S.}, series = {Biophysical Journal. 75 (1998), H. 6}, journal = {Biophysical Journal. 75 (1998), H. 6}, isbn = {1542-0086}, pages = {3179 -- 3183}, year = {1998}, language = {en} } @article{NomdedeuWillenSchiefferetal.2012, author = {Nomdedeu, Mar Monsonis and Willen, Christine and Schieffer, Andre and Arndt, Hartmut}, title = {Temperature-dependent ranges of coexistence in a model of a two-prey-one-predator microbial food web}, series = {Marine Biology}, volume = {159}, journal = {Marine Biology}, number = {11}, publisher = {Springer}, address = {Berlin}, issn = {1432-1793}, doi = {10.1007/s00227-012-1966-x}, pages = {2423 -- 2430}, year = {2012}, abstract = {The objective of our study was to analyze the effects of temperature on the population dynamics of a three-species food web consisting of two prey bacteria (Pedobacter sp. and Acinetobacter johnsonii) and a protozoan predator (Tetrahymena pyriformis) as model organisms. We assessed the effects of temperature on the growth rates of all three species with the objective of developing a model with four differential equations based on the experimental data. The following hypotheses were tested at a theoretical level: Firstly, temperature changes can affect the dynamic behavior of a system by temperature-dependent parameters and interactions and secondly, food web response to temperature cannot be derived from the single species temperature response. The main outcome of the study is that temperature changes affect the parameter range where coexistence is possible within all three species. This has significant consequences on our ideas regarding the evaluation of effects of global warming.}, language = {en} } @article{OezsoyluAliaziziWagneretal.2024, author = {{\"O}zsoylu, Dua and Aliazizi, Fereshteh and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Template bacteria-free fabrication of surface imprinted polymer-based biosensor for E. coli detection using photolithographic mimics: Hacking bacterial adhesion}, series = {Biosensors and Bioelectronics}, volume = {261}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-4235 (eISSN)}, doi = {10.1016/j.bios.2024.116491}, pages = {11 Seiten}, year = {2024}, abstract = {As one class of molecular imprinted polymers (MIPs), surface imprinted polymer (SIP)-based biosensors show great potential in direct whole-bacteria detection. Micro-contact imprinting, that involves stamping the template bacteria immobilized on a substrate into a pre-polymerized polymer matrix, is the most straightforward and prominent method to obtain SIP-based biosensors. However, the major drawbacks of the method arise from the requirement for fresh template bacteria and often non-reproducible bacteria distribution on the stamp substrate. Herein, we developed a positive master stamp containing photolithographic mimics of the template bacteria (E. coli) enabling reproducible fabrication of biomimetic SIP-based biosensors without the need for the "real" bacteria cells. By using atomic force and scanning electron microscopy imaging techniques, respectively, the E. coli-capturing ability of the SIP samples was tested, and compared with non-imprinted polymer (NIP)-based samples and control SIP samples, in which the cavity geometry does not match with E. coli cells. It was revealed that the presence of the biomimetic E. coli imprints with a specifically designed geometry increases the sensor E. coli-capturing ability by an "imprinting factor" of about 3. These findings show the importance of geometry-guided physical recognition in bacterial detection using SIP-based biosensors. In addition, this imprinting strategy was employed to interdigitated electrodes and QCM (quartz crystal microbalance) chips. E. coli detection performance of the sensors was demonstrated with electrochemical impedance spectroscopy (EIS) and QCM measurements with dissipation monitoring technique (QCM-D).}, language = {en} }