@article{WulfhorstDuweMerseburgetal.2016, author = {Wulfhorst, Helene and Duwe, Anna-Maria and Merseburg, Johannes and Tippk{\"o}tter, Nils}, title = {Compositional analysis of pretreated (beech) wood using differential scanning calorimetry and multivariate data analysis}, series = {Tetrahedron}, volume = {72}, journal = {Tetrahedron}, number = {46}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.tet.2016.04.029}, pages = {7329 -- 7334}, year = {2016}, abstract = {The composition of plant biomass varies depending on the feedstock and pre-treatment conditions and influences its processing in biorefineries. In order to ensure optimal process conditions, the quantitative proportion of the main polymeric components of the pre-treated biomass has to be determined. Current standard procedures for biomass compositional analysis are complex, the measurements are afflicted with errors and therefore often not comparable. Hence, new powerful analytical methods are urgently required to characterize biomass. In this contribution, Differential Scanning Calorimetry (DSC) was applied in combination with multivariate data analysis (MVA) to detect the cellulose content of the plant biomass pretreated by Liquid Hot Water (LHW) and Organosolv processes under various conditions. Unlike conventional techniques, the developed analytic method enables the accurate quantification of monosaccharide content of the plant biomass without any previous sample preparation. It is easy to handle and avoids errors in sample preparation.}, language = {en} } @article{SchoppDollGraeseretal.2016, author = {Schopp, Christoph and Doll, Timo and Gr{\"a}ser, Ulrich and Harzheim, Thomas and Heuermann, Holger and Kling, Rainer and Marso, Michael}, title = {Capacitively Coupled High-Pressure Lamp Using Coaxial Line Networks}, series = {IEEE Transactions on Microwave Theory and Techniques}, volume = {64}, journal = {IEEE Transactions on Microwave Theory and Techniques}, number = {10}, publisher = {IEEE}, address = {New York, NY}, issn = {0018-9480}, doi = {10.1109/TMTT.2016.2600326}, pages = {3363 -- 3368}, year = {2016}, abstract = {This paper describes the development of a capacitively coupled high-pressure lamp with input power between 20 and 43 W at 2.45 GHz, using a coaxial line network. Compared with other electrodeless lamp systems, no cavity has to be used and a reduction in the input power is achieved. Therefore, this lamp is an alternative to the halogen incandescent lamp for domestic lighting. To serve the demands of domestic lighting, the filling of the lamp is optimized over all other resulting requirements, such as high efficacy at low induced powers and fast startups. A workflow to develop RF-driven plasma applications is presented, which makes use of the hot S-parameter technique. Descriptions of the fitting process inside a circuit and FEM simulator are given. Results of the combined ignition and operation network from simulations and measurements are compared. An initial prototype is built and measurements of the lamp's lighting properties are presented along with an investigation of the efficacy optimizations using large signal amplitude modulation. With this lamp, an efficacy of 135 lmW -1 is achieved.}, language = {en} } @article{LeversStaatLaack2016, author = {Levers, A. and Staat, Manfred and Laack, Walter van}, title = {Analysis of the long-term effect of the MBST® nuclear magnetic resonance therapy on gonarthrosis}, series = {Orthopedic Practice}, volume = {47}, journal = {Orthopedic Practice}, number = {11}, pages = {521 -- 528}, year = {2016}, language = {en} } @article{FunkeBeckmannKeinzetal.2016, author = {Funke, Harald and Beckmann, Nils and Keinz, Jan and Abanteriba, Sylvester}, title = {Comparison of Numerical Combustion Models for Hydrogen and Hydrogen-Rich Syngas Applied for Dry-Low-NOx-Micromix-Combustion}, series = {ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition Volume 4A: Combustion, Fuels and Emissions Seoul, South Korea, June 13-17, 2016}, journal = {ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition Volume 4A: Combustion, Fuels and Emissions Seoul, South Korea, June 13-17, 2016}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-4975-0}, doi = {10.1115/GT2016-56430}, pages = {12}, year = {2016}, abstract = {The Dry-Low-NOₓ (DLN) Micromix combustion technology has been developed as low emission combustion principle for industrial gas turbines fueled with hydrogen or syngas. The combustion process is based on the phenomenon of jet-in-crossflow-mixing. Fuel is injected perpendicular into the air-cross-flow and burned in a multitude of miniaturized, diffusion-like flames. The miniaturization of the flames leads to a significant reduction of NOₓ emissions due to the very short residence time of reactants in the flame. In the Micromix research approach, CFD analyses are validated towards experimental results. The combination of numerical and experimental methods allows an efficient design and optimization of DLN Micromix combustors concerning combustion stability and low NOₓ emissions. The paper presents a comparison of several numerical combustion models for hydrogen and hydrogen-rich syngas. They differ in the complexity of the underlying reaction mechanism and the associated computational effort. For pure hydrogen combustion a one-step global reaction is applied using a hybrid Eddy-Break-up model that incorporates finite rate kinetics. The model is evaluated and compared to a detailed hydrogen combustion mechanism derived by Li et al. including 9 species and 19 reversible elementary reactions. Based on this mechanism, reduction of the computational effort is achieved by applying the Flamelet Generated Manifolds (FGM) method while the accuracy of the detailed reaction scheme is maintained. For hydrogen-rich syngas combustion (H₂-CO) numerical analyses based on a skeletal H₂/CO reaction mechanism derived by Hawkes et al. and a detailed reaction mechanism provided by Ranzi et al. are performed. The comparison between combustion models and the validation of numerical results is based on exhaust gas compositions available from experimental investigation on DLN Micromix combustors. The conducted evaluation confirms that the applied detailed combustion mechanisms are able to predict the general physics of the DLN-Micromix combustion process accurately. The Flamelet Generated Manifolds method proved to be generally suitable to reduce the computational effort while maintaining the accuracy of detailed chemistry. Especially for reaction mechanisms with a high number of species accuracy and computational effort can be balanced using the FGM model.}, language = {en} } @article{AimenovaDigelEshibaev2016, author = {Aimenova, Zh. E. and Digel, Ilya and Eshibaev, А. А.}, title = {Dynamics of accumulation of lagochirzin in Lagochilus setulosus phytomass during the growing season and also features of its cultivation in the conditions of a typical sierozem}, series = {KazNU Bulletin. Biology series}, volume = {69}, journal = {KazNU Bulletin. Biology series}, number = {4}, publisher = {Al-Farabi Kazakh National University}, address = {Almaty}, issn = {1563-0218}, pages = {4 -- 11}, year = {2016}, abstract = {L.setulosus is offered for creation of biopreparation «Setulin», possesing he- mostatic action, the basic reactant of biopreparation is diterpen - lagochirzin. Results under the maintenance and dynamics of diterpen lagochirzin accumula- tion in various parts of L.setulosus are presented: in roots, stalks, leaves, flowers and calyx lobes during the growing season, and also results on conditions of cultivation L.setulosus in the conditions of a typical sierozem are resulted. From the obtained data is visible, that the given species of a plant is endemic. It is established, that dynamics of accumulation of lagochirzin in phytomass accrues from the beginning to the middle of the growing season. The chemical analysis of L.setulosus on a localization of lagochirzin in various organs of a plant, has shown, that the greatest quantity of lagochirzin collects in calyx lobes of the plants. Also it is established, that L.setulosus can be cultivated in the conditions of the typical sierozem, a mineral food is necessary for the given species of plants of Lagochilus genus, except nitric fertilizers. Comparative studying of wild-growing and cultural forms of L.setulosus has shown, that in the cultivated phytomass of plants the maintenance of lagochirzin on 17-20 \% higher than in the wild-growing species.}, language = {en} } @article{RothTippkoetter2016, author = {Roth, Jasmine and Tippk{\"o}tter, Nils}, title = {Evaluation of lignocellulosic material for butanol production using enzymatic hydrolysate medium}, series = {Cellulose Chemistry and Technology}, volume = {50}, journal = {Cellulose Chemistry and Technology}, number = {3-4}, publisher = {Editura Academiei Romane}, address = {Bukarest}, pages = {405 -- 410}, year = {2016}, abstract = {Butanol is a promising gasoline additive and platform chemical that can be readily produced via acetone-butanolethanol (ABE) fermentation from pretreated lignocellulosic materials. This article examines lignocellulosic material from beech wood for ABE fermentation, using Clostridium acetobutylicum. First, the utilization of both C₅₋ (xylose) and C₆₋ (glucose) sugars as sole carbon source was investigated in static cultivation, using serum bottles and synthetic medium. The utilization of pentose sugar resulted in a solvent yield of 0.231 g·g_sugar⁻¹, compared to 0.262 g·g_sugar⁻¹ using hexose. Then, the Organosolv pretreated crude cellulose fibers (CF) were enzymatically decomposed, and the resulting hydrolysate medium was analyzed for inhibiting compounds (furans, organic acids, phenolics) and treated with ionexchangers for detoxification. Batch fermentation in a bioreactor using CF hydrolysate medium resulted in a total solvent yield of 0.20 gABE·g_sugar⁻¹.}, language = {en} }