@article{FrotscherStaat2014, author = {Frotscher, Ralf and Staat, Manfred}, title = {Stresses produced by different textile mesh implants in a tissue equivalent}, series = {BioNanoMaterials}, volume = {15}, journal = {BioNanoMaterials}, number = {1-2}, publisher = {De Gruyter}, address = {Berlin}, issn = {2191-4672 (E-Journal); 2193-066X (E-Journal); 0011-8656 (Print); 1616-0177 (Print); 2193-0651 (Print)}, doi = {10.1515/bnm-2014-0003}, pages = {25 -- 30}, year = {2014}, abstract = {Two single-incision mini-slings used for treating urinary incontinence in women are compared with respect to the stresses they produce in their surrounding tissue. In an earlier paper we experimentally observed that these implants produce considerably different stress distributions in a muscle tissue equivalent. Here we perform 2D finite element analyses to compare the shear stresses and normal stresses in the tissue equivalent for the two meshes and to investigate their failure behavior. The results clearly show that the Gynecare TVT fails for increasing loads in a zipper-like manner because it gradually debonds from the surrounding tissue. Contrary to that, the tissue at the ends of the DynaMesh-SIS direct may rupture but only at higher loads. The simulation results are in good agreement with the experimental observations thus the computational model helps to interpret the experimental results and provides a tool for qualitative evaluation of mesh implants.}, language = {en} } @article{VuStaatTran2007, author = {Vu, Duc Khoi and Staat, Manfred and Tran, Ich Thinh}, title = {Analysis of pressure equipment by application of the primal-dual theory of shakedown}, series = {Communications in Numerical Methods in Engineering. 23 (2007), H. 3}, journal = {Communications in Numerical Methods in Engineering. 23 (2007), H. 3}, isbn = {1069-8299}, pages = {213 -- 225}, year = {2007}, language = {en} } @article{StaatVu2006, author = {Staat, Manfred and Vu, Khoi Duc}, title = {Limit loads of circumferentially flawed pipes and cylindrical vessels under internal pressure}, series = {International Journal of Pressure Vessels and Piping. 83 (2006), H. 3}, journal = {International Journal of Pressure Vessels and Piping. 83 (2006), H. 3}, isbn = {0308-0161}, pages = {188 -- 196}, year = {2006}, language = {en} } @article{SagymbayGENZhetal.2019, author = {Sagymbay, Altynay and G.E., Nusupbaeva and N.Zh, Tleumbetova and A.S., Mutalieva and Nurpeisova, Ainur and D.B., Jussupova and Digel, Ilya}, title = {Molecular genetics features of the epidemic season 2017-2018 on the influenza in Kazakhstan}, series = {Eurasian Journal of Ecology}, volume = {58}, journal = {Eurasian Journal of Ecology}, number = {1}, isbn = {2617-7358}, pages = {50 -- 60}, year = {2019}, language = {ru} } @article{JungStaat2020, author = {Jung, Alexander and Staat, Manfred}, title = {Erratum to "Modeling and simulation of human induced pluripotent stem cell-derived cardiac tissue" [GAMM-Mitteilungen, (2019), 42, 4, 10.1002/gamm.201900002]}, series = {GAMM-Mitteilungen}, volume = {43}, journal = {GAMM-Mitteilungen}, number = {4}, publisher = {Wiley-VCH GmbH}, address = {Weinheim}, issn = {1522-2608}, doi = {10.1002/gamm.202000011}, year = {2020}, language = {en} } @article{RauschKahmannBaltschunetal.2020, author = {Rausch, Valentin and Kahmann, Stephanie Lucina and Baltschun, Christoph and Staat, Manfred and M{\"u}ller, Lars P. and Wegmann, Kilian}, title = {Pressure distribution to the distal biceps tendon at the radial tuberosity: a biomechanical study}, series = {The Journal of Hand Surgery}, volume = {45}, journal = {The Journal of Hand Surgery}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0363-5023}, doi = {10.1016/j.jhsa.2020.01.006}, pages = {776.e1 -- 776.e9}, year = {2020}, abstract = {Purpose Mechanical impingement at the narrow radioulnar space of the tuberosity is believed to be an etiological factor in the injury of the distal biceps tendon. The aim of the study was to compare the pressure distribution at the proximal radioulnar space between 2 fixation techniques and the intact state. Methods Six right arms and 6 left arms from 5 female and 6 male frozen specimens were used for this study. A pressure transducer was introduced at the height of the radial tuberosity with the intact distal biceps tendon and after 2 fixation methods: the suture-anchor and the cortical button technique. The force (N), maximum pressure (kPa) applied to the radial tuberosity, and the contact area (mm²) of the radial tuberosity with the ulna were measured and differences from the intact tendon were detected from 60° supination to 60° pronation in 15° increments with the elbow in full extension and in 45° and 90° flexion of the elbow. Results With the distal biceps tendon intact, the pressures during pronation were similar regardless of extension and flexion and were the highest at 60° pronation with 90° elbow flexion (23.3 ± 53.5 kPa). After repair of the tendon, the mean peak pressure, contact area, and total force showed an increase regardless of the fixation technique. Highest peak pressures were found using the cortical button technique at 45° flexion of the elbow and 60° pronation. These differences were significantly different from the intact tendon. The contact area was significantly larger in full extension and 15°, 30°, and 60° pronation using the cortical button technique. Conclusions Pressures on the distal biceps tendon at the radial tuberosity increase during pronation, especially after repair of the tendon. Clinical relevance Mechanical impingement could play a role in both the etiology of primary distal biceps tendon ruptures and the complications occurring after fixation of the tendon using certain techniques.}, language = {en} } @article{Staat2003, author = {Staat, Manfred}, title = {Shakedown and ratchetting under tension-torsion loadings: analysis and experiments}, year = {2003}, abstract = {Structural design analyses are conducted with the aim of verifying the exclusion of ratchetting. To this end it is important to make a clear distinction between the shakedown range and the ratchetting range. The performed experiment comprised a hollow tension specimen which was subjected to alternating axial forces, superimposed with constant moments. First, a series of uniaxial tests has been carried out in order to calibrate a bounded kinematic hardening rule. The load parameters have been selected on the basis of previous shakedown analyses with the PERMAS code using a kinematic hardening material model. It is shown that this shakedown analysis gives reasonable agreement between the experimental and the numerical results. A linear and a nonlinear kinematic hardening model of two-surface plasticity are compared in material shakedown analysis.}, subject = {Einspielen }, language = {en} } @article{StaatVu2007, author = {Staat, Manfred and Vu, Duc-Khoi}, title = {Limit analysis of flaws in pressurized pipes and cylindrical vessels. Part I: Axial defects}, series = {Engineering Fracture Mechanics. 74 (2007), H. 3}, journal = {Engineering Fracture Mechanics. 74 (2007), H. 3}, isbn = {0013-7944}, pages = {431 -- 450}, year = {2007}, language = {en} } @article{VantStaatBaroud2008, author = {Vant, Christianne and Staat, Manfred and Baroud, Gamal}, title = {Percutaneous Vertebroplasty: A Review of Two Intraoperative Complications}, series = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, journal = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-540-75408-4}, pages = {527 -- 539}, year = {2008}, language = {en} } @article{VuStaat2007, author = {Vu, Duc Khoi and Staat, Manfred}, title = {Shakedown analysis of structures made of materials with temperature-dependent yield stress}, series = {International Journal of Solids and Structures. 44 (2007), H. 13}, journal = {International Journal of Solids and Structures. 44 (2007), H. 13}, isbn = {0020-7683}, pages = {4524 -- 4540}, year = {2007}, language = {en} }