@article{GasparyanPoghossianVitusevichetal.2011, author = {Gasparyan, Ferdinand V. and Poghossian, Arshak and Vitusevich, Svetlana A. and Petrychuk, Mykhaylo V. and Sydoruk, Viktor A. and Siqueira, Jos{\´e} R. Jr. and Oliveira, Osvaldo N. Jr. and Offenh{\"a}usser, Andreas and Sch{\"o}ning, Michael Josef}, title = {Low-Frequency Noise in Field-Effect Devices Functionalized With Dendrimer/Carbon-Nanotube Multilayers}, series = {IEEE Sensors Journal. 11 (2011), H. 1}, journal = {IEEE Sensors Journal. 11 (2011), H. 1}, publisher = {IEEE}, address = {New York}, isbn = {1530-437X}, pages = {142 -- 149}, year = {2011}, language = {en} } @article{BaeckerDellePoghossianetal.2011, author = {B{\"a}cker, Matthias and Delle, L. and Poghossian, Arshak and Biselli, Manfred and Zang, Werner and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Electrochemical sensor array for bioprocess monitoring}, series = {Electrochimica Acta (2011)}, volume = {56}, journal = {Electrochimica Acta (2011)}, number = {26}, publisher = {Elsevier}, address = {Amsterdam}, pages = {9673 -- 9678}, year = {2011}, language = {en} } @article{WagnerMiyamotoWerneretal.2011, author = {Wagner, Torsten and Miyamoto, K. and Werner, Frederik and Sch{\"o}ning, Michael Josef and Yoshinobu, T.}, title = {Flexible electrochemical imaging with "zoom-in" functionality by using a new type of light-addressable potentiometric sensor}, publisher = {IEEE}, address = {New York}, pages = {2133 -- 2135}, year = {2011}, language = {en} } @article{MiyamotoWagnerSchoeningetal.2011, author = {Miyamoto, K. and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, T.}, title = {Multi-well structure for cell culture on the chemical imaging sensor}, publisher = {IEEE}, address = {New York}, pages = {2130 -- 2132}, year = {2011}, language = {en} } @article{HuckJollyWagneretal.2011, author = {Huck, Christina and Jolly, Christina and Wagner, Patrick and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {One-chip integrated dual amperometric/field-effect sensor for the detection of dissolved hydrogen}, series = {Procedia Engineering. 25 (2011)}, journal = {Procedia Engineering. 25 (2011)}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1877-7058}, pages = {1161 -- 1164}, year = {2011}, language = {en} } @article{WagnerMiyamotoShigiharaetal.2011, author = {Wagner, Torsten and Miyamoto, Ko-ichiro and Shigihara, Noriko and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Microfluidic systems with free definable sensor spots by an integrated light-addressable potentiometric sensor}, series = {Procedia Engineering. 25 (2011)}, journal = {Procedia Engineering. 25 (2011)}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1877-7058}, pages = {791 -- 794}, year = {2011}, language = {en} } @article{BohrnStuetzFuchsetal.2011, author = {Bohrn, U. and St{\"u}tz, E. and Fuchs, K. and Fleischer, M. and Sch{\"o}ning, Michael Josef and Wagner, P.}, title = {Air Quality Monitoring using a Whole-Cell based Sensor System}, series = {Procedia Engineering. 25 (2011)}, journal = {Procedia Engineering. 25 (2011)}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1877-7058}, pages = {1421 -- 1424}, year = {2011}, language = {en} } @article{WernerWagnerMiyamotoetal.2011, author = {Werner, Frederik and Wagner, Torsten and Miyamoto, Ko-ichiro and Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {High speed and high resolution chemical imaging based on a new type of OLED-LAPS set-up}, series = {Procedia Engineering. 25 (2011)}, journal = {Procedia Engineering. 25 (2011)}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1877-7058}, pages = {346 -- 349}, year = {2011}, language = {en} } @article{PoghossianMalzahnAbouzaretal.2011, author = {Poghossian, Arshak and Malzahn, K. and Abouzar, Maryam H. and Mehndiratta, P. and Katz, E. and Sch{\"o}ning, Michael Josef}, title = {Integration of biomolecular logic gates with field-effect transducers}, series = {Electrochimica Acta. 56 (2011), H. 26}, journal = {Electrochimica Acta. 56 (2011), H. 26}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0013-4686}, pages = {9661 -- 9665}, year = {2011}, language = {en} } @article{GrinsvenBonStrauvenetal.2012, author = {Grinsven, Bart van and Bon, Natalie vanden and Strauven, Hannelore and Grieten, Lars and Murib, Mohammed and Jim{\´e}nez Monroy, Kathia L. and Janssens, Stoffel D. and Haenen, Ken and Sch{\"o}ning, Michael Josef and Vermeeren, Veronique and Ameloot, Marcel and Michiels, Luc and Thoelen, Ronald and Ceuninck, Ward de and Wagner, Patrick}, title = {Heat-Transfer Resistance at Solid-Liquid Interfaces: A Tool for The Detection of Single Nucleotide Polymorphisms in DNA.}, series = {ACS Nano}, volume = {6}, journal = {ACS Nano}, number = {3}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {1936-086X}, doi = {10.1021/nn300147e}, pages = {2712 -- 2721}, year = {2012}, abstract = {In this article, we report on the heat-transfer resistance at interfaces as a novel, denaturation-based method to detect single-nucleotide polymorphisms in DNA. We observed that a molecular brush of double-stranded DNA grafted onto synthetic diamond surfaces does not notably affect the heat-transfer resistance at the solid-to-liquid interface. In contrast to this, molecular brushes of single-stranded DNA cause, surprisingly, a substantially higher heat-transfer resistance and behave like a thermally insulating layer. This effect can be utilized to identify ds-DNA melting temperatures via the switching from low- to high heat-transfer resistance. The melting temperatures identified with this method for different DNA duplexes (29 base pairs without and with built-in mutations) correlate nicely with data calculated by modeling. The method is fast, label-free (without the need for fluorescent or radioactive markers), allows for repetitive measurements, and can also be extended toward array formats. Reference measurements by confocal fluorescence microscopy and impedance spectroscopy confirm that the switching of heat-transfer resistance upon denaturation is indeed related to the thermal on-chip denaturation of DNA.}, language = {en} }