@article{OezsoyluKizildagSchoeningetal.2020, author = {{\"O}zsoylu, Dua and Kizildag, Sefa and Sch{\"o}ning, Michael Josef and Wagner, Torsten}, title = {Differential chemical imaging of extracellular acidification within microfluidic channels using a plasma-functionalized light-addressable potentiometric sensor (LAPS)}, series = {Physics in Medicine}, volume = {10}, journal = {Physics in Medicine}, number = {100030}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-4510}, doi = {10.1016/j.phmed.2020.100030}, pages = {8}, year = {2020}, abstract = {Extracellular acidification is a basic indicator for alterations in two vital metabolic pathways: glycolysis and cellular respiration. Measuring these alterations by monitoring extracellular acidification using cell-based biosensors such as LAPS plays an important role in studying these pathways whose disorders are associated with numerous diseases including cancer. However, the surface of the biosensors must be specially tailored to ensure high cell compatibility so that cells can represent more in vivo-like behavior, which is critical to gain more realistic in vitro results from the analyses, e.g., drug discovery experiments. In this work, O2 plasma patterning on the LAPS surface is studied to enhance surface features of the sensor chip, e.g., wettability and biofunctionality. The surface treated with O2 plasma for 30 s exhibits enhanced cytocompatibility for adherent CHO-K1 cells, which promotes cell spreading and proliferation. The plasma-modified LAPS chip is then integrated into a microfluidic system, which provides two identical channels to facilitate differential measurements of the extracellular acidification of CHO-K1 cells. To the best of our knowledge, it is the first time that extracellular acidification within microfluidic channels is quantitatively visualized as differential (bio-)chemical images.}, language = {en} } @article{EngelmannPourshahidiShalabyetal.2022, author = {Engelmann, Ulrich M. and Pourshahidi, Mohammad Ali and Shalaby, Ahmed and Krause, Hans-Joachim}, title = {Probing particle size dependency of frequency mixing magnetic detection with dynamic relaxation simulation}, series = {Journal of Magnetism and Magnetic Materials}, volume = {563}, journal = {Journal of Magnetism and Magnetic Materials}, number = {In progress, Art. No. 169965}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-8853}, doi = {10.1016/j.jmmm.2022.169965}, year = {2022}, abstract = {Biomedical applications of magnetic nanoparticles (MNP) fundamentally rely on the particles' magnetic relaxation as a response to an alternating magnetic field. The magnetic relaxation complexly depends on the interplay of MNP magnetic and physical properties with the applied field parameters. It is commonly accepted that particle core size is a major contributor to signal generation in all the above applications, however, most MNP samples comprise broad distribution spanning nm and more. Therefore, precise knowledge of the exact contribution of individual core sizes to signal generation is desired for optimal MNP design generally for each application. Specifically, we present a magnetic relaxation simulation-driven analysis of experimental frequency mixing magnetic detection (FMMD) for biosensing to quantify the contributions of individual core size fractions towards signal generation. Applying our method to two different experimental MNP systems, we found the most dominant contributions from approx. 20 nm sized particles in the two independent MNP systems. Additional comparison between freely suspended and immobilized MNP also reveals insight in the MNP microstructure, allowing to use FMMD for MNP characterization, as well as to further fine-tune its applicability in biosensing.}, language = {en} } @article{AchtsnichtToedterNiehuesetal.2019, author = {Achtsnicht, Stefan and T{\"o}dter, Julia and Niehues, Julia and Tel{\"o}ken, Matthias and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim and Schr{\"o}per, Florian}, title = {3D printed modular immunofiltration columns for frequency mixing-based multiplex magnetic immunodetection}, series = {Sensors}, volume = {19}, journal = {Sensors}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s19010148}, pages = {15 Seiten}, year = {2019}, abstract = {For performing point-of-care molecular diagnostics, magnetic immunoassays constitute a promising alternative to established enzyme-linked immunosorbent assays (ELISA) because they are fast, robust and sensitive. Simultaneous detection of multiple biomolecular targets from one body fluid sample is desired. The aim of this work is to show that multiplex magnetic immunodetection based on magnetic frequency mixing by means of modular immunofiltration columns prepared for different targets is feasible. By calculations of the magnetic response signal, the required spacing between the modules was determined. Immunofiltration columns were manufactured by 3D printing and antibody immobilization was performed in a batch approach. It was shown experimentally that two different target molecules in a sample solution could be individually detected in a single assaying step with magnetic measurements of the corresponding immobilization filters. The arrangement order of the filters and of a negative control did not influence the results. Thus, a simple and reliable approach to multi-target magnetic immunodetection was demonstrated.}, language = {en} } @article{AliaziziOezsoyluBakhshiSichanietal.2024, author = {Aliazizi, Fereshteh and {\"O}zsoylu, Dua and Bakhshi Sichani, Soroush and Khorshid, Mehran and Glorieux, Christ and Robbens, Johan and Sch{\"o}ning, Michael Josef and Wagner, Patrick}, title = {Development and Calibration of a Microfluidic, Chip-Based Sensor System for Monitoring the Physical Properties of Water Samples in Aquacultures}, series = {Micromachines}, volume = {15}, journal = {Micromachines}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2072-666X}, doi = {10.3390/mi15060755}, year = {2024}, abstract = {In this work, we present a compact, bifunctional chip-based sensor setup that measures the temperature and electrical conductivity of water samples, including specimens from rivers and channels, aquaculture, and the Atlantic Ocean. For conductivity measurements, we utilize the impedance amplitude recorded via interdigitated electrode structures at a single triggering frequency. The results are well in line with data obtained using a calibrated reference instrument. The new setup holds for conductivity values spanning almost two orders of magnitude (river versus ocean water) without the need for equivalent circuit modelling. Temperature measurements were performed in four-point geometry with an on-chip platinum RTD (resistance temperature detector) in the temperature range between 2 °C and 40 °C, showing no hysteresis effects between warming and cooling cycles. Although the meander was not shielded against the liquid, the temperature calibration provided equivalent results to low conductive Milli-Q and highly conductive ocean water. The sensor is therefore suitable for inline and online monitoring purposes in recirculating aquaculture systems.}, language = {en} } @article{WeldenPoghossianVahidpouretal.2022, author = {Welden, Melanie and Poghossian, Arshak and Vahidpour, Farnoosh and Wendlandt, Tim and Keusgen, Michael and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {Towards multi-analyte detection with field-effect capacitors modified with tobacco mosaic virus bioparticles as enzyme nanocarriers}, series = {Biosensors}, volume = {12}, journal = {Biosensors}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2079-6374}, doi = {10.3390/bios12010043}, pages = {Artikel 43}, year = {2022}, abstract = {Utilizing an appropriate enzyme immobilization strategy is crucial for designing enzyme-based biosensors. Plant virus-like particles represent ideal nanoscaffolds for an extremely dense and precise immobilization of enzymes, due to their regular shape, high surface-to-volume ratio and high density of surface binding sites. In the present work, tobacco mosaic virus (TMV) particles were applied for the co-immobilization of penicillinase and urease onto the gate surface of a field-effect electrolyte-insulator-semiconductor capacitor (EISCAP) with a p-Si-SiO₂-Ta₂O₅ layer structure for the sequential detection of penicillin and urea. The TMV-assisted bi-enzyme EISCAP biosensor exhibited a high urea and penicillin sensitivity of 54 and 85 mV/dec, respectively, in the concentration range of 0.1-3 mM. For comparison, the characteristics of single-enzyme EISCAP biosensors modified with TMV particles immobilized with either penicillinase or urease were also investigated. The surface morphology of the TMV-modified Ta₂O₅-gate was analyzed by scanning electron microscopy. Additionally, the bi-enzyme EISCAP was applied to mimic an XOR (Exclusive OR) enzyme logic gate.}, language = {en} } @article{PourshahidiAchtsnichtOffenhaeusseretal.2022, author = {Pourshahidi, Ali Mohammad and Achtsnicht, Stefan and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim}, title = {Frequency Mixing Magnetic Detection Setup Employing Permanent Ring Magnets as a Static Offset Field Source}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {22}, editor = {Offenh{\"a}usser, Andreas}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s22228776}, pages = {12 Seiten}, year = {2022}, abstract = {Frequency mixing magnetic detection (FMMD) has been explored for its applications in fields of magnetic biosensing, multiplex detection of magnetic nanoparticles (MNP) and the determination of core size distribution of MNP samples. Such applications rely on the application of a static offset magnetic field, which is generated traditionally with an electromagnet. Such a setup requires a current source, as well as passive or active cooling strategies, which directly sets a limitation based on the portability aspect that is desired for point of care (POC) monitoring applications. In this work, a measurement head is introduced that involves the utilization of two ring-shaped permanent magnets to generate a static offset magnetic field. A steel cylinder in the ring bores homogenizes the field. By variation of the distance between the ring magnets and of the thickness of the steel cylinder, the magnitude of the magnetic field at the sample position can be adjusted. Furthermore, the measurement setup is compared to the electromagnet offset module based on measured signals and temperature behavior.}, language = {en} } @article{FalkenbergBottBongaertsetal.2022, author = {Falkenberg, Fabian and Bott, Michael and Bongaerts, Johannes and Siegert, Petra}, title = {Phylogenetic survey of the subtilase family and a data-mining-based search for new subtilisins from Bacillaceae}, series = {Frontiers in Microbiology}, volume = {2022}, journal = {Frontiers in Microbiology}, number = {13}, publisher = {Frontiers}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2022.1017978}, pages = {Artikel 13:1017978}, year = {2022}, abstract = {The subtilase family (S8), a member of the clan SB of serine proteases are ubiquitous in all kingdoms of life and fulfil different physiological functions. Subtilases are divided in several groups and especially subtilisins are of interest as they are used in various industrial sectors. Therefore, we searched for new subtilisin sequences of the family Bacillaceae using a data mining approach. The obtained 1,400 sequences were phylogenetically classified in the context of the subtilase family. This required an updated comprehensive overview of the different groups within this family. To fill this gap, we conducted a phylogenetic survey of the S8 family with characterised holotypes derived from the MEROPS database. The analysis revealed the presence of eight previously uncharacterised groups and 13 subgroups within the S8 family. The sequences that emerged from the data mining with the set filter parameters were mainly assigned to the subtilisin subgroups of true subtilisins, high-alkaline subtilisins, and phylogenetically intermediate subtilisins and represent an excellent source for new subtilisin candidates.}, language = {en} } @article{WeldenSeverinsPoghossianetal.2022, author = {Welden, Melanie and Severins, Robin and Poghossian, Arshak and Wege, Christina and Bongaerts, Johannes and Siegert, Petra and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Detection of acetoin and diacetyl by a tobacco mosaic virus-assisted field-effect biosensor}, series = {Chemosensors}, volume = {10}, journal = {Chemosensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors10060218}, pages = {Artikel 218}, year = {2022}, abstract = {Acetoin and diacetyl have a major impact on the flavor of alcoholic beverages such as wine or beer. Therefore, their measurement is important during the fermentation process. Until now, gas chromatographic techniques have typically been applied; however, these require expensive laboratory equipment and trained staff, and do not allow for online monitoring. In this work, a capacitive electrolyte-insulator-semiconductor sensor modified with tobacco mosaic virus (TMV) particles as enzyme nanocarriers for the detection of acetoin and diacetyl is presented. The enzyme acetoin reductase from Alkalihalobacillus clausii DSM 8716ᵀ is immobilized via biotin-streptavidin affinity, binding to the surface of the TMV particles. The TMV-assisted biosensor is electrochemically characterized by means of leakage-current, capacitance-voltage, and constant capacitance measurements. In this paper, the novel biosensor is studied regarding its sensitivity and long-term stability in buffer solution. Moreover, the TMV-assisted capacitive field-effect sensor is applied for the detection of diacetyl for the first time. The measurement of acetoin and diacetyl with the same sensor setup is demonstrated. Finally, the successive detection of acetoin and diacetyl in buffer and in diluted beer is studied by tuning the sensitivity of the biosensor using the pH value of the measurement solution.}, language = {en} } @article{KarschuckKaulenPoghossianetal.2021, author = {Karschuck, Tobias and Kaulen, Corinna and Poghossian, Arshak and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {Gold nanoparticle-modified capacitive field-effect sensors: Studying the surface density of nanoparticles and coupling of charged polyelectrolyte macromolecules}, series = {Electrochemical Science Advances}, volume = {2}, journal = {Electrochemical Science Advances}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0938-5193}, doi = {10.1002/elsa.202100179}, pages = {10 Seiten}, year = {2021}, abstract = {The coupling of ligand-stabilized gold nanoparticles with field-effect devices offers new possibilities for label-free biosensing. In this work, we study the immobilization of aminooctanethiol-stabilized gold nanoparticles (AuAOTs) on the silicon dioxide surface of a capacitive field-effect sensor. The terminal amino group of the AuAOT is well suited for the functionalization with biomolecules. The attachment of the positively-charged AuAOTs on a capacitive field-effect sensor was detected by direct electrical readout using capacitance-voltage and constant capacitance measurements. With a higher particle density on the sensor surface, the measured signal change was correspondingly more pronounced. The results demonstrate the ability of capacitive field-effect sensors for the non-destructive quantitative validation of nanoparticle immobilization. In addition, the electrostatic binding of the polyanion polystyrene sulfonate to the AuAOT-modified sensor surface was studied as a model system for the label-free detection of charged macromolecules. Most likely, this approach can be transferred to the label-free detection of other charged molecules such as enzymes or antibodies.}, language = {en} } @article{SchoeningBronderWuetal.2017, author = {Sch{\"o}ning, Michael Josef and Bronder, Thomas and Wu, Chunsheng and Scheja, Sabrina and Jessing, Max and Metzger-Boddien, Christoph and Keusgen, Michael and Poghossian, Arshak}, title = {Label-Free DNA Detection with Capacitive Field-Effect Devices—Challenges and Opportunities}, series = {Proceedings}, volume = {1}, journal = {Proceedings}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2504-3900}, doi = {10.3390/proceedings1080719}, pages = {Artikel 719}, year = {2017}, abstract = {Field-effect EIS (electrolyte-insulator-semiconductor) sensors modified with a positively charged weak polyelectrolyte layer have been applied for the electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge. The EIS sensors are able to detect the existence of target DNA amplicons in PCR (polymerase chain reaction) samples and thus, can be used as tool for a quick verification of DNA amplification and the successful PCR process. Due to their miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge, those sensors can serve as possible platform for the development of label-free DNA chips. Possible application fields as well as challenges and limitations will be discussed.}, language = {en} }