@article{BechtSchollmayerMonakhovaetal.2021, author = {Becht, Alexander and Schollmayer, Curd and Monakhova, Yulia and Holzgrabe, Ulrike}, title = {Tracing the origin of paracetamol tablets by near-infrared, mid-infrared, and nuclear magnetic resonance spectroscopy using principal component analysis and linear discriminant analysis}, series = {Analytical and Bioanalytical Chemistry}, volume = {413}, journal = {Analytical and Bioanalytical Chemistry}, publisher = {Springer Nature}, issn = {1618-2650}, doi = {10.1007/s00216-021-03249-z}, pages = {3107 -- 3118}, year = {2021}, abstract = {Most drugs are no longer produced in their own countries by the pharmaceutical companies, but by contract manufacturers or at manufacturing sites in countries that can produce more cheaply. This not only makes it difficult to trace them back but also leaves room for criminal organizations to fake them unnoticed. For these reasons, it is becoming increasingly difficult to determine the exact origin of drugs. The goal of this work was to investigate how exactly this is possible by using different spectroscopic methods like nuclear magnetic resonance and near- and mid-infrared spectroscopy in combination with multivariate data analysis. As an example, 56 out of 64 different paracetamol preparations, collected from 19 countries around the world, were chosen to investigate whether it is possible to determine the pharmaceutical company, manufacturing site, or country of origin. By means of suitable pre-processing of the spectra and the different information contained in each method, principal component analysis was able to evaluate manufacturing relationships between individual companies and to differentiate between production sites or formulations. Linear discriminant analysis showed different results depending on the spectral method and purpose. For all spectroscopic methods, it was found that the classification of the preparations to their manufacturer achieves better results than the classification to their pharmaceutical company. The best results were obtained with nuclear magnetic resonance and near-infrared data, with 94.6\%/99.6\% and 98.7/100\% of the spectra of the preparations correctly assigned to their pharmaceutical company or manufacturer.}, language = {en} } @article{Golland2021, author = {Golland, Alexander}, title = {Anforderungen an Transfer Impact Assessments bei Datentransfers in unsichere Drittl{\"a}nder}, series = {DSB Datenschutz-Berater}, volume = {45}, journal = {DSB Datenschutz-Berater}, number = {7-8}, publisher = {DFV Mediengruppe}, address = {Frankfurt a.M.}, isbn = {0170-7256}, pages = {229 -- 231}, year = {2021}, language = {de} } @article{BergsMonakhovaDiehletal.2021, author = {Bergs, Michel and Monakhova, Yulia and Diehl, Bernd W. and Konow, Christopher and V{\"o}lkering, Georg and Pude, Ralf and Schulze, Margit}, title = {Lignins isolated via catalyst-free organosolv pulping from Miscanthus x giganteus, M. sinensis, M. robustus and M. nagara: a comparative study}, series = {Molecules}, volume = {26}, journal = {Molecules}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {1420-3049}, doi = {10.3390/molecules26040842}, year = {2021}, abstract = {As a low-input crop, Miscanthus offers numerous advantages that, in addition to agricultural applications, permits its exploitation for energy, fuel, and material production. Depending on the Miscanthus genotype, season, and harvest time as well as plant component (leaf versus stem), correlations between structure and properties of the corresponding isolated lignins differ. Here, a comparative study is presented between lignins isolated from M. x giganteus, M. sinensis, M. robustus and M. nagara using a catalyst-free organosolv pulping process. The lignins from different plant constituents are also compared regarding their similarities and differences regarding monolignol ratio and important linkages. Results showed that the plant genotype has the weakest influence on monolignol content and interunit linkages. In contrast, structural differences are more significant among lignins of different harvest time and/or season. Analyses were performed using fast and simple methods such as nuclear magnetic resonance (NMR) spectroscopy. Data was assigned to four different linkages (A: β-O-4 linkage, B: phenylcoumaran, C: resinol, D: β-unsaturated ester). In conclusion, A content is particularly high in leaf-derived lignins at just under 70\% and significantly lower in stem and mixture lignins at around 60\% and almost 65\%. The second most common linkage pattern is D in all isolated lignins, the proportion of which is also strongly dependent on the crop portion. Both stem and mixture lignins, have a relatively high share of approximately 20\% or more (maximum is M. sinensis Sin2 with over 30\%). In the leaf-derived lignins, the proportions are significantly lower on average. Stem samples should be chosen if the highest possible lignin content is desired, specifically from the M. x giganteus genotype, which revealed lignin contents up to 27\%. Due to the better frost resistance and higher stem stability, M. nagara offers some advantages compared to M. x giganteus. Miscanthus crops are shown to be very attractive lignocellulose feedstock (LCF) for second generation biorefineries and lignin generation in Europe.}, language = {en} } @article{BurgerRumpfDoetal.2021, author = {Burger, Ren{\´e} and Rumpf, Jessica and Do, Xuan Tung and Monakhova, Yulia and Diehl, Bernd W. K. and Rehahn, Matthias and Schulze, Margit}, title = {Is NMR combined with multivariate regression applicable for the molecular weight determination of randomly cross-linked polymers such as lignin?}, series = {ACS Omega}, volume = {6}, journal = {ACS Omega}, number = {44}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {2470-1343}, doi = {10.1021/acsomega.1c03574}, pages = {29516 -- 29524}, year = {2021}, abstract = {The molecular weight properties of lignins are one of the key elements that need to be analyzed for a successful industrial application of these promising biopolymers. In this study, the use of 1H NMR as well as diffusion-ordered spectroscopy (DOSY NMR), combined with multivariate regression methods, was investigated for the determination of the molecular weight (Mw and Mn) and the polydispersity of organosolv lignins (n = 53, Miscanthus x giganteus, Paulownia tomentosa, and Silphium perfoliatum). The suitability of the models was demonstrated by cross validation (CV) as well as by an independent validation set of samples from different biomass origins (beech wood and wheat straw). CV errors of ca. 7-9 and 14-16\% were achieved for all parameters with the models from the 1H NMR spectra and the DOSY NMR data, respectively. The prediction errors for the validation samples were in a similar range for the partial least squares model from the 1H NMR data and for a multiple linear regression using the DOSY NMR data. The results indicate the usefulness of NMR measurements combined with multivariate regression methods as a potential alternative to more time-consuming methods such as gel permeation chromatography.}, language = {en} } @article{MonakhovaDiehl2021, author = {Monakhova, Yulia and Diehl, Bernd W. K.}, title = {Simplification of NMR Workflows by Standardization Using 2H Integral of Deuterated Solvent as Applied to Aloe vera Preparations}, series = {Applied Magnetic Resonance}, volume = {52}, journal = {Applied Magnetic Resonance}, number = {11}, publisher = {Springer}, address = {Cham}, issn = {1613-7507}, doi = {10.1007/s00723-021-01393-4}, pages = {1591 -- 1600}, year = {2021}, abstract = {In this study, a recently proposed NMR standardization approach by 2H integral of deuterated solvent for quantitative multicomponent analysis of complex mixtures is presented. As a proof of principle, the existing NMR routine for the analysis of Aloe vera products was modified. Instead of using absolute integrals of targeted compounds and internal standard (nicotinamide) from 1H-NMR spectra, quantification was performed based on the ratio of a particular 1H-NMR compound integral and 2H-NMR signal of deuterated solvent D2O. Validation characteristics (linearity, repeatability, accuracy) were evaluated and the results showed that the method has the same precision as internal standardization in case of multicomponent screening. Moreover, a dehydration process by freeze drying is not necessary for the new routine. Now, our NMR profiling of A. vera products needs only limited sample preparation and data processing. The new standardization methodology provides an appealing alternative for multicomponent NMR screening. In general, this novel approach, using standardization by 2H integral, benefits from reduced sample preparation steps and uncertainties, and is recommended in different application areas (purity determination, forensics, pharmaceutical analysis, etc.).}, language = {en} } @article{BurmistrovaSobolevaMonakhova2021, author = {Burmistrova, Natalia A. and Soboleva, Polina M. and Monakhova, Yulia}, title = {Is infrared spectroscopy combined with multivariate analysis a promising tool for heparin authentication?}, series = {Journal of Pharmaceutical and Biomedical Analysis}, volume = {194}, journal = {Journal of Pharmaceutical and Biomedical Analysis}, number = {Article number: 113811}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0731-7085}, doi = {10.1016/j.jpba.2020.113811}, year = {2021}, abstract = {The investigation of the possibility to determine various characteristics of powder heparin (n = 115) was carried out with infrared spectroscopy. The evaluation of heparin samples included several parameters such as purity grade, distributing company, animal source as well as heparin species (i.e. Na-heparin, Ca-heparin, and heparinoids). Multivariate analysis using principal component analysis (PCA), soft independent modelling of class analogy (SIMCA), and partial least squares - discriminant analysis (PLS-DA) were applied for the modelling of spectral data. Different pre-processing methods were applied to IR spectral data; multiplicative scatter correction (MSC) was chosen as the most relevant. Obtained results were confirmed by nuclear magnetic resonance (NMR) spectroscopy. Good predictive ability of this approach demonstrates the potential of IR spectroscopy and chemometrics for screening of heparin quality. This approach, however, is designed as a screening tool and is not considered as a replacement for either of the methods required by USP and FDA.}, language = {en} } @article{PourshahidiAchtsnichtNambipareecheeetal.2021, author = {Pourshahidi, Ali Mohammad and Achtsnicht, Stefan and Nambipareechee, Mrinal Murali and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim}, title = {Multiplex detection of magnetic beads using offset field dependent frequency mixing magnetic detection}, series = {Sensors}, volume = {21}, journal = {Sensors}, number = {17}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s21175859}, pages = {16 Seiten}, year = {2021}, abstract = {Magnetic immunoassays employing Frequency Mixing Magnetic Detection (FMMD) have recently become increasingly popular for quantitative detection of various analytes. Simultaneous analysis of a sample for two or more targets is desirable in order to reduce the sample amount, save consumables, and save time. We show that different types of magnetic beads can be distinguished according to their frequency mixing response to a two-frequency magnetic excitation at different static magnetic offset fields. We recorded the offset field dependent FMMD response of two different particle types at frequencies ƒ₁ + n⋅ƒ₂, n = 1, 2, 3, 4 with ƒ₁ = 30.8 kHz and ƒ₂ = 63 Hz. Their signals were clearly distinguishable by the locations of the extremes and zeros of their responses. Binary mixtures of the two particle types were prepared with different mixing ratios. The mixture samples were analyzed by determining the best linear combination of the two pure constituents that best resembled the measured signals of the mixtures. Using a quadratic programming algorithm, the mixing ratios could be determined with an accuracy of greater than 14\%. If each particle type is functionalized with a different antibody, multiplex detection of two different analytes becomes feasible.}, language = {en} } @article{WeldenJablonskiWegeetal.2021, author = {Welden, Rene and Jablonski, Melanie and Wege, Christina and Keusgen, Michael and Wagner, Patrick Hermann and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Light-Addressable Actuator-Sensor Platform for Monitoring and Manipulation of pH Gradients in Microfluidics: A Case Study with the Enzyme Penicillinase}, series = {Biosensors}, volume = {11}, journal = {Biosensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2079-6374}, doi = {10.3390/bios11060171}, pages = {Artikel 171}, year = {2021}, abstract = {The feasibility of light-addressed detection and manipulation of pH gradients inside an electrochemical microfluidic cell was studied. Local pH changes, induced by a light-addressable electrode (LAE), were detected using a light-addressable potentiometric sensor (LAPS) with different measurement modes representing an actuator-sensor system. Biosensor functionality was examined depending on locally induced pH gradients with the help of the model enzyme penicillinase, which had been immobilized in the microfluidic channel. The surface morphology of the LAE and enzyme-functionalized LAPS was studied by scanning electron microscopy. Furthermore, the penicillin sensitivity of the LAPS inside the microfluidic channel was determined with regard to the analyte's pH influence on the enzymatic reaction rate. In a final experiment, the LAE-controlled pH inhibition of the enzyme activity was monitored by the LAPS.}, language = {en} } @article{AkimbekovDigelTastambeketal.2021, author = {Akimbekov, Nuraly S. and Digel, Ilya and Tastambek, Kuanysh T. and Sherelkhan, Dinara K. and Jussupova, Dariya B. and Altynbay, Nazym P.}, title = {Low-rank coal as a source of humic substances for soil amendment and fertility management}, series = {Agriculture}, volume = {11}, journal = {Agriculture}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2077-0472}, doi = {10.3390/agriculture11121261}, pages = {25 Seiten}, year = {2021}, abstract = {Humic substances (HS), as important environmental components, are essential to soil health and agricultural sustainability. The usage of low-rank coal (LRC) for energy generation has declined considerably due to the growing popularity of renewable energy sources and gas. However, their potential as soil amendment aimed to maintain soil quality and productivity deserves more recognition. LRC, a highly heterogeneous material in nature, contains large quantities of HS and may effectively help to restore the physicochemical, biological, and ecological functionality of soil. Multiple emerging studies support the view that LRC and its derivatives can positively impact the soil microclimate, nutrient status, and organic matter turnover. Moreover, the phytotoxic effects of some pollutants can be reduced by subsequent LRC application. Broad geographical availability, relatively low cost, and good technical applicability of LRC offer the advantage of easy fulfilling soil amendment and conditioner requirements worldwide. This review analyzes and emphasizes the potential of LRC and its numerous forms/combinations for soil amelioration and crop production. A great benefit would be a systematic investment strategy implicating safe utilization and long-term application of LRC for sustainable agricultural production.}, language = {en} } @article{Kleefeld2021, author = {Kleefeld, Andreas}, title = {The hot spots conjecture can be false: some numerical examples}, series = {Advances in Computational Mathematics}, volume = {47}, journal = {Advances in Computational Mathematics}, publisher = {Springer}, address = {Dordrecht}, issn = {1019-7168}, doi = {10.1007/s10444-021-09911-5}, year = {2021}, abstract = {The hot spots conjecture is only known to be true for special geometries. This paper shows numerically that the hot spots conjecture can fail to be true for easy to construct bounded domains with one hole. The underlying eigenvalue problem for the Laplace equation with Neumann boundary condition is solved with boundary integral equations yielding a non-linear eigenvalue problem. Its discretization via the boundary element collocation method in combination with the algorithm by Beyn yields highly accurate results both for the first non-zero eigenvalue and its corresponding eigenfunction which is due to superconvergence. Additionally, it can be shown numerically that the ratio between the maximal/minimal value inside the domain and its maximal/minimal value on the boundary can be larger than 1 + 10- 3. Finally, numerical examples for easy to construct domains with up to five holes are provided which fail the hot spots conjecture as well.}, language = {en} }