@inproceedings{TomićPennaDeJongetal.2020, author = {Tomić, Igor and Penna, Andrea and DeJong, Matthew and Butenweg, Christoph and Correia, Ant{\´o}nio A. and Candeias, Paulo X. and Senaldi, Ilaria and Guerrini, Gabriele and Malomo, Daniele and Beyer, Katrin}, title = {Seismic testing of adjacent interacting masonry structures}, series = {12th International Conference on Structural Analysis of Historical Constructions (SAHC 2020)}, booktitle = {12th International Conference on Structural Analysis of Historical Constructions (SAHC 2020)}, doi = {10.23967/sahc.2021.234}, pages = {1 -- 12}, year = {2020}, abstract = {In many historical centres in Europe, stone masonry buildings are part of building aggregates, which developed when the layout of the city or village was densified. In these aggregates, adjacent buildings share structural walls to support floors and roofs. Meanwhile, the masonry walls of the fa{\c{c}}ades of adjacent buildings are often connected by dry joints since adjacent buildings were constructed at different times. Observations after for example the recent Central Italy earthquakes showed that the dry joints between the building units were often the first elements to be damaged. As a result, the joints opened up leading to pounding between the building units and a complicated interaction at floor and roof beam supports. The analysis of such building aggregates is very challenging and modelling guidelines do not exist. Advances in the development of analysis methods have been impeded by the lack of experimental data on the seismic response of such aggregates. The objective of the project AIMS (Seismic Testing of Adjacent Interacting Masonry Structures), included in the H2020 project SERA, is to provide such experimental data by testing an aggregate of two buildings under two horizontal components of dynamic excitation. The test unit is built at half-scale, with a two-storey building and a one-storey building. The buildings share one common wall while the fa{\c{c}}ade walls are connected by dry joints. The floors are at different heights leading to a complex dynamic response of this smallest possible building aggregate. The shake table test is conducted at the LNEC seismic testing facility. The testing sequence comprises four levels of shaking: 25\%, 50\%, 75\% and 100\% of nominal shaking table capacity. Extensive instrumentation, including accelerometers, displacement transducers and optical measurement systems, provides detailed information on the building aggregate response. Special attention is paid to the interface opening, the globa}, language = {en} } @inproceedings{DachwaldXuFeldmannetal.2011, author = {Dachwald, Bernd and Xu, Changsheng and Feldmann, Marco and Plescher, Engelbert}, title = {IceMole : Development of a novel subsurface ice probe and testing of the first prototype on the Morteratsch Glacier}, series = {EGU General Assembly 2011 Vienna | Austria | 03 - 08 April 2011}, booktitle = {EGU General Assembly 2011 Vienna | Austria | 03 - 08 April 2011}, year = {2011}, abstract = {We present the novel concept of a combined drilling and melting probe for subsurface ice research. This probe, named "IceMole", is currently developed, built, and tested at the FH Aachen University of Applied Sciences' Astronautical Laboratory. Here, we describe its first prototype design and report the results of its field tests on the Swiss Morteratsch glacier. Although the IceMole design is currently adapted to terrestrial glaciers and ice shields, it may later be modified for the subsurface in-situ investigation of extraterrestrial ice, e.g., on Mars, Europa, and Enceladus. If life exists on those bodies, it may be present in the ice (as life can also be found in the deep ice of Earth).}, language = {en} } @inproceedings{AnicPenavaGuljasetal.2018, author = {Anic, Filip and Penava, Davorin and Guljas, Ivica and Sarhosis, Vasilis and Abrahamczyk, Lars and Butenweg, Christoph}, title = {The Effect of Openings on Out-of-Plane Capacity of Masonry Infilled Reinforced Concrete Frames}, series = {16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018}, booktitle = {16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018}, pages = {1 -- 11}, year = {2018}, language = {en} } @inproceedings{ButenwegRajan2014, author = {Butenweg, Christoph and Rajan, Sreelakshmy}, title = {Design and construction techniques of AAC masonry buildings in earthquakes regions}, series = {10 years Xella research in Building Materials : Symposium on the 4th and 5th of September, Potsdam 2014}, booktitle = {10 years Xella research in Building Materials : Symposium on the 4th and 5th of September, Potsdam 2014}, year = {2014}, language = {en} } @inproceedings{GrundmannBieleDachwaldetal.2016, author = {Grundmann, Jan Thimo and Biele, Jens and Dachwald, Bernd and Grimm, Christian and Lange, Caroline and Ulamec, Stephan}, title = {Small spacecraft for small solar system body science, planetary defence and applications}, series = {IEEE Aerospace Conference 2016}, booktitle = {IEEE Aerospace Conference 2016}, pages = {1 -- 20}, year = {2016}, abstract = {Following the recent successful landings and occasional re-awakenings of PHILAE, the lander carried aboard ROSETTA to comet 67P/Churyumov-Gerasimenko, and the launch of the Mobile Asteroid Surface Scout, MASCOT, aboard the HAYABUSA2 space probe to asteroid (162173) Ryugu we present an overview of the characteristics and peculiarities of small spacecraft missions to small solar system bodies (SSSB). Their main purpose is planetary science which is transitioning from a 'pure' science of observation of the distant to one also supporting in-situ applications relevant for life on Earth. Here we focus on missions at the interface of SSSB science and planetary defence applications. We provide a brief overview of small spacecraft SSSB missions and on this background present recent missions, projects and related studies at the German Aerospace Center, DLR, that contribute to the worldwide planetary defence community. These range from Earth orbit technology demonstrators to active science missions in interplanetary space. We provide a summary of experience from recently flown missions with DLR participation as well as a number of studies. These include PHILAE, the lander of ESA's ROSETTA comet rendezvous mission now on the surface of comet 67P/Churyumov-Gerasimenko, and the Mobile Asteroid Surface Scout, MASCOT, now in cruise to the ~1 km diameter C-type near-Earth asteroid (162173) Ryugu aboard the Japanese sample-return probe HAYABUSA2. We introduce the differences between the conventional methods employed in the design, integration and testing of large spacecraft and the new approaches developed by small spacecraft projects. We expect that the practical experience that can be gained from projects on extremely compressed timelines or with high-intensity operation phases on a newly explored small solar system body can contribute significantly to the study, preparation and realization of future planetary defence related missions. One is AIDA (Asteroid Impact \& Deflection Assessment), a joint effort of ESA, JHU/APL, NASA, OCA and DLR, combining JHU/APL's DART (Double Asteroid Redirection Test) and ESA's AIM (Asteroid Impact Monitor) spacecraft in a mission towards near-Earth binary asteroid system (65803) Didymos. DLR is currently applying MASCOT heritage and lessons learned to the design of MASCOT2, a lander for the AIM mission to support a bistatic low frequency radar experiment with PHILAE/ROSETTA CONSERT heritage to explore the inner structure of Didymoon which is the designated impact target for DART.}, language = {en} } @inproceedings{GrundmannBauerBieleetal.2015, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Biele, Jens and Cordero, Frederico and Dachwald, Bernd and Koncz, Alexander and Krause, Christian and Mikschl, Tobias and Montenegro, Sergio and Quantius, Dominik and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seefeldt, Patric and T{\´o}th, Norbert and Wejmo, Elisabet}, title = {From Sail to Soil - Getting Sailcraft Out of the Harbour on a Visit to One of Earth's Nearest Neighbours}, series = {4th IAA Planetary Denfense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy}, booktitle = {4th IAA Planetary Denfense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy}, pages = {20 S.}, year = {2015}, language = {en} } @inproceedings{GoettenHavermannBraunetal.2018, author = {G{\"o}tten, Falk and Havermann, Marc and Braun, Carsten and Gomez, Francisco and Bil, Cees}, title = {On the Applicability of Empirical Drag Estimation Methods for Unmanned Air Vehicle Design Read More: https://arc.aiaa.org/doi/10.2514/6.2018-3192}, series = {2018 Aviation Technology, Integration, and Operations Conference, AIAA AVIATION Forum}, booktitle = {2018 Aviation Technology, Integration, and Operations Conference, AIAA AVIATION Forum}, issn = {1533-385X}, doi = {10.2514/6.2018-3192}, pages = {Article 3192}, year = {2018}, language = {en} } @inproceedings{WeissHeslenfeldSaeweetal.2022, author = {Weiss, Christian and Heslenfeld, Jonas and Saewe, Jasmin Kathrin and Bremen, Sebastian and H{\"a}fner, Constantin Leon}, title = {Investigation on the influence of powder humidity in Laser Powder Bed Fusion (LPBF)}, series = {Procedia CIRP 12th CIRP Conference on Photonic Technologies [LANE 2022]}, volume = {111}, booktitle = {Procedia CIRP 12th CIRP Conference on Photonic Technologies [LANE 2022]}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8271}, doi = {10.1016/j.procir.2022.08.102}, pages = {115 -- 120}, year = {2022}, abstract = {In the Laser Powder Bed Fusion (LPBF) process, parts are built out of metal powder material by exposure of a laser beam. During handling operations of the powder material, several influencing factors can affect the properties of the powder material and therefore directly influence the processability during manufacturing. Contamination by moisture due to handling operations is one of the most critical aspects of powder quality. In order to investigate the influences of powder humidity on LPBF processing, four materials (AlSi10Mg, Ti6Al4V, 316L and IN718) are chosen for this study. The powder material is artificially humidified, subsequently characterized, manufactured into cubic samples in a miniaturized process chamber and analyzed for their relative density. The results indicate that the processability and reproducibility of parts made of AlSi10Mg and Ti6Al4V are susceptible to humidity, while IN718 and 316L are barely influenced.}, language = {en} } @inproceedings{Butenweg2021, author = {Butenweg, Christoph}, title = {Integrated approach for monitoring and management of buildings with digital building models and modern sensor technologies}, series = {Proceedings of the International Conference Civil Engineering 2021 - Achievements and Visions}, booktitle = {Proceedings of the International Conference Civil Engineering 2021 - Achievements and Visions}, editor = {Kuzmanović, Vladan and Ignjatović, Ivan}, publisher = {University of Belgrade}, address = {Belgrade}, pages = {67 -- 75}, year = {2021}, abstract = {Nowadays modern high-performance buildings and facilities are equipped with monitoring systems and sensors to control building characteristics like energy consumption, temperature pattern and structural safety. The visualization and interpretation of sensor data is typically based on simple spreadsheets and non-standardized user-oriented solutions, which makes it difficult for building owners, facility managers and decision-makers to evaluate and understand the data. The solution of this problem in the future are integrated BIM-Sensor approaches which allow the generation of BIM models incorporating all relevant information of monitoring systems. These approaches support both the dynamic visualization of key structural performance parameters, the effective long-term management of sensor data based on BIM and provide a user-friendly interface to communicate with various stakeholders. A major benefit for the end user is the use of the BIM software architecture, which is the future standard anyway. In the following, the application of the integrated BIM-Sensor approach is illustrated for a typical industrial facility as a part of an early warning and rapid response system for earthquake events currently developed in the research project "ROBUST" with financial support by the German Federal Ministry for Economic Affairs and Energy (BMWI).}, language = {en} } @inproceedings{LuBeyerBosiljkovetal.2016, author = {Lu, S. and Beyer, K. and Bosiljkov, V. and Butenweg, Christoph and D'Ayala, D. and Degee, H. and Gams, M. and Klouda, J. and Lagomarsino, S. and Penna, A. and Mojsilovic, N. and da Porto, F. and Sorrentino, L. and Vintzileou, E.}, title = {Next generation of Eurocode 8, masonry chapter}, series = {Brick and Block Masonry Proceedings of the 16th International Brick and Block Masonry Conference, Padova, Italy, 26-30 June 2016}, booktitle = {Brick and Block Masonry Proceedings of the 16th International Brick and Block Masonry Conference, Padova, Italy, 26-30 June 2016}, editor = {Modena, Claudio and da Porto, F. and Valluzzi, M.R.}, publisher = {Taylor \& Francis}, address = {London}, isbn = {978-1-138-02999-6 (Print)}, pages = {695 -- 700}, year = {2016}, abstract = {This paper describes the procedure on the evaluation of the masonry chapter for the next generation of Eurocode 8, the European Standard for earthquake-resistant design. In CEN, TC 250/SC8, working group WG 1 has been established to support the subcommittee on the topic of masonry on both design of new structures (EN1998-1) and assessment of existing structures (EN1998-3). The aim is to elaborate suggestions for amendments which fit the current state of the art in masonry and earthquake-resistant design. Focus will be on modelling, simplified methods, linear-analysis (q-values, overstrength-values), nonlinear procedures, out-of-plane design as well as on clearer definition of limit states. Beside these, topics related to general material properties, reinforced masonry, confined masonry, mixed structures and non-structural infills will be covered too. This paper presents the preliminary work and results up to the submission date.}, language = {en} }