@inproceedings{TranMatthiesStavroulakisetal.2018, author = {Tran, Ngoc Trinh and Matthies, Hermann G. and Stavroulakis, Georgios Eleftherios and Staat, Manfred}, title = {Direct plastic structural design by chance constrained programming}, series = {6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK}, booktitle = {6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK}, pages = {12 Seiten}, year = {2018}, abstract = {We propose a stochastic programming method to analyse limit and shakedown of structures under random strength with lognormal distribution. In this investigation a dual chance constrained programming algorithm is developed to calculate simultaneously both the upper and lower bounds of the plastic collapse limit or the shakedown limit. The edge-based smoothed finite element method (ES-FEM) using three-node linear triangular elements is used.}, language = {en} } @inproceedings{JungFrotscherStaat2018, author = {Jung, Alexander and Frotscher, Ralf and Staat, Manfred}, title = {Electromechanical model of hiPSC-derived ventricular cardiomyocytes cocultured with fibroblasts}, series = {6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK}, booktitle = {6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK}, pages = {11 Seiten}, year = {2018}, abstract = {The CellDrum provides an experimental setup to study the mechanical effects of fibroblasts co-cultured with hiPSC-derived ventricular cardiomyocytes. Multi-scale computational models based on the Finite Element Method are developed. Coupled electrical cardiomyocyte-fibroblast models (cell level) are embedded into reaction-diffusion equations (tissue level) which compute the propagation of the action potential in the cardiac tissue. Electromechanical coupling is realised by an excitation-contraction model (cell level) and the active stress arising during contraction is added to the passive stress in the force balance, which determines the tissue displacement (tissue level). Tissue parameters in the model can be identified experimentally to the specific sample.}, language = {en} } @inproceedings{KahmannUschokWegmannetal.2018, author = {Kahmann, Stephanie Lucina and Uschok, Stephan and Wegmann, Kilian and M{\"u}ller, Lars-P. and Staat, Manfred}, title = {Biomechanical multibody model with refined kinematics of the elbow}, series = {6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK}, booktitle = {6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK}, pages = {11 Seiten}, year = {2018}, abstract = {The overall objective of this study is to develop a new external fixator, which closely maps the native kinematics of the elbow to decrease the joint force resulting in reduced rehabilitation time and pain. An experimental setup was designed to determine the native kinematics of the elbow during flexion of cadaveric arms. As a preliminary study, data from literature was used to modify a published biomechanical model for the calculation of the joint and muscle forces. They were compared to the original model and the effect of the kinematic refinement was evaluated. Furthermore, the obtained muscle forces were determined in order to apply them in the experimental setup. The joint forces in the modified model differed slightly from the forces in the original model. The muscle force curves changed particularly for small flexion angles but their magnitude for larger angles was consistent.}, language = {en} } @inproceedings{RichterBraunsteinStaeudleetal.2018, author = {Richter, Charlotte and Braunstein, Bjoern and St{\"a}udle, Benjamin and Attias, Julia and Suess, Alexander and Weber, T. and Rittweger, Joern and Green, David A. and Albracht, Kirsten}, title = {In vivo fascicle length of the gastrocnemius muscle during walking in simulated martian gravity using two different body weight support devices}, series = {23rd Annual Congress of the European College of Sport Science, Dublin, Irland}, booktitle = {23rd Annual Congress of the European College of Sport Science, Dublin, Irland}, year = {2018}, language = {en} } @inproceedings{SchmidtsKraftSiebigterothetal.2019, author = {Schmidts, Oliver and Kraft, Bodo and Siebigteroth, Ines and Z{\"u}ndorf, Albert}, title = {Schema Matching with Frequent Changes on Semi-Structured Input Files: A Machine Learning Approach on Biological Product Data}, series = {Proceedings of the 21st International Conference on Enterprise Information Systems - Volume 1: ICEIS}, booktitle = {Proceedings of the 21st International Conference on Enterprise Information Systems - Volume 1: ICEIS}, isbn = {978-989-758-372-8}, doi = {10.5220/0007723602080215}, pages = {208 -- 215}, year = {2019}, language = {en} } @inproceedings{HingleyDikta2019, author = {Hingley, Peter and Dikta, Gerhard}, title = {Finding a well performing box-jenkins forecasting model for annualised patent filings counts}, series = {International Symposium on Forecasting, Thessaloniki, Greece, June 2019}, booktitle = {International Symposium on Forecasting, Thessaloniki, Greece, June 2019}, pages = {24 Folien}, year = {2019}, language = {en} } @inproceedings{SiebigterothKraftSchmidtsetal.2019, author = {Siebigteroth, Ines and Kraft, Bodo and Schmidts, Oliver and Z{\"u}ndorf, Albert}, title = {A Study on Improving Corpus Creation by Pair Annotation}, series = {Proceedings of the Poster Session of the 2nd Conference on Language, Data and Knowledge (LDK-PS 2019)}, booktitle = {Proceedings of the Poster Session of the 2nd Conference on Language, Data and Knowledge (LDK-PS 2019)}, issn = {1613-0073}, pages = {40 -- 44}, year = {2019}, language = {en} } @inproceedings{KetelhutGoellBraunsteinetal.2019, author = {Ketelhut, Maike and G{\"o}ll, Fabian and Braunstein, Bjoern and Albracht, Kirsten and Abel, Dirk}, title = {Iterative learning control of an industrial robot for neuromuscular training}, series = {2019 IEEE Conference on Control Technology and Applications}, booktitle = {2019 IEEE Conference on Control Technology and Applications}, publisher = {IEEE}, address = {New York}, isbn = {978-1-7281-2767-5 (ePub)}, doi = {10.1109/CCTA.2019.8920659}, pages = {7 Seiten}, year = {2019}, abstract = {Effective training requires high muscle forces potentially leading to training-induced injuries. Thus, continuous monitoring and controlling of the loadings applied to the musculoskeletal system along the motion trajectory is required. In this paper, a norm-optimal iterative learning control algorithm for the robot-assisted training is developed. The algorithm aims at minimizing the external knee joint moment, which is commonly used to quantify the loading of the medial compartment. To estimate the external knee joint moment, a musculoskeletal lower extremity model is implemented in OpenSim and coupled with a model of an industrial robot and a force plate mounted at its end-effector. The algorithm is tested in simulation for patients with varus, normal and valgus alignment of the knee. The results show that the algorithm is able to minimize the external knee joint moment in all three cases and converges after less than seven iterations.}, language = {en} } @inproceedings{HunkerJungGossmannetal.2019, author = {Hunker, Jan and Jung, Alexander and Goßmann, Matthias and Linder, Peter and Staat, Manfred}, title = {Development of a tool to analyze the conduction speed in microelectrode array measurements of cardiac tissue}, series = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, booktitle = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, editor = {Staat, Manfred and Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-22-6}, doi = {10.17185/duepublico/48750}, pages = {7 -- 8}, year = {2019}, abstract = {The discovery of human induced pluripotent stem cells reprogrammed from somatic cells [1] and their ability to differentiate into cardiomyocytes (hiPSC-CMs) has provided a robust platform for drug screening [2]. Drug screenings are essential in the development of new components, particularly for evaluating the potential of drugs to induce life-threatening pro-arrhythmias. Between 1988 and 2009, 14 drugs have been removed from the market for this reason [3]. The microelectrode array (MEA) technique is a robust tool for drug screening as it detects the field potentials (FPs) for the entire cell culture. Furthermore, the propagation of the field potential can be examined on an electrode basis. To analyze MEA measurements in detail, we have developed an open-source tool.}, language = {en} } @inproceedings{AzarDigel2019, author = {Azar, Fouad and Digel, Ilya}, title = {Utilization of fluorescence spectroscopy and neural networks in clinical analysis}, series = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, booktitle = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, editor = {Staat, Manfred and Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-22-6}, doi = {10.17185/duepublico/48750}, pages = {40 -- 41}, year = {2019}, abstract = {Fluorescence topography of human urine in combination with learning algorithms can provide a variant pattern recognition method in analytical clinical chemistry and, eventually, diagnosis.}, language = {en} }