@article{AbouzarPoghossianSiqueiraetal.2010, author = {Abouzar, Maryam H. and Poghossian, Arshak and Siqueira, Jos{\´e} R. Jr. and Oliveira, Osvaldo N. Jr. and Moritz, Werner and Sch{\"o}ning, Michael Josef}, title = {Capacitive electrolyte-insulator-semiconductor structures functionalised with a polyelectrolyte/enzyme multilayer: New strategy for enhanced field-effect biosensing}, series = {Physica Status Solidi (A)}, volume = {207}, journal = {Physica Status Solidi (A)}, number = {4}, publisher = {Wiley-VCH}, address = {Berlin}, issn = {1862-6300}, doi = {10.1002/pssa.200983317}, pages = {884 -- 890}, year = {2010}, abstract = {A novel strategy for enhanced field-effect biosensing using capacitive electrolyte-insulator-semiconductor (EIS) structures functionalised with pH-responsive weak polyelectrolyte/enzyme or dendrimer/enzyme multilayers is presented. The feasibility of the proposed approach is exemplarily demonstrated by realising a penicillin biosensor based on a capacitive p-Si-SiO2 EIS structure functionalised with a poly(allylamine hydrochloride) (PAH)/penicillinase and a poly(amidoamine) dendrimer/penicillinase multilayer. The developed sensors response to changes in both the local pH value near the gate surface and the charge of macromolecules induced via enzymatic reaction, resulting in a higher sensitivity. For comparison, an EIS penicillin biosensor with adsorptively immobilised penicillinase has been also studied. The highest penicillin sensitivity of 100 mV/dec has been observed for the EIS sensor functionalised with the PAH/penicillinase multilayer. The lower and upper detection limit was around 20 µM and 10 mM, respectively. In addition, an incorporation of enzymes in a multilayer prepared by layer-by-layer technique provides a larger amount of immobilised enzymes per sensor area, reduces enzyme leaching effects and thus, enhances the biosensor lifetime (the loss of penicillin sensitivity after 2 months was 10-12\%).}, language = {en} } @article{SchoeningTsarouchasBeckersetal.1996, author = {Sch{\"o}ning, Michael Josef and Tsarouchas, D. and Beckers, Leah and Schubert, J. and Zander, W. and Kordoš, P. and L{\"u}th, Hans}, title = {A highly long-term stable silicon-based pH sensor using pulsed laser deposition technique}, series = {Sensors and Actuators B. 35 (1996), H. 1-3}, journal = {Sensors and Actuators B. 35 (1996), H. 1-3}, isbn = {0925-4005}, pages = {228 -- 233}, year = {1996}, language = {en} } @article{SchoeningPraemassingBeckersetal.1998, author = {Sch{\"o}ning, Michael Josef and Pr{\"a}massing, T. and Beckers, Leah and Zander, W.}, title = {Ein langzeitstabiler pH-Sensor auf Siliziumbasis hergestellt in D{\"u}nnschichttechnik mittels Laserablation}, series = {Chemie- und Biosensoren : aktuelle Anwendungen und Entwicklungstrends / 3. Dresdner Sensor-Symposium, 8. - 10. Dezember 1997, Dresden-Radebeul. J. P. Baselt ... (Hg.)}, journal = {Chemie- und Biosensoren : aktuelle Anwendungen und Entwicklungstrends / 3. Dresdner Sensor-Symposium, 8. - 10. Dezember 1997, Dresden-Radebeul. J. P. Baselt ... (Hg.)}, publisher = {Dresden Univ. Press}, address = {Dresden ; M{\"u}nchen}, isbn = {3-933168-03-1}, pages = {99 -- 102}, year = {1998}, language = {de} } @article{SchmitzRoetertPischinger1988, author = {Schmitz, G{\"u}nter and Roetert, J. and Pischinger, Martin}, title = {A Fast Intelligent VMEbus System for Combustion Analysis in Engines}, series = {19th [nineteenth] International Symposium on Automotive Technology \& [and] Automation : with particular reference to cell control and quality management systems for the manufacturing industries; Monte Carlo, 24. - 28. October 1988.}, journal = {19th [nineteenth] International Symposium on Automotive Technology \& [and] Automation : with particular reference to cell control and quality management systems for the manufacturing industries; Monte Carlo, 24. - 28. October 1988.}, publisher = {Automotive Automation Ltd}, address = {Croydon}, isbn = {0947719229}, pages = {381 -- 391}, year = {1988}, language = {en} } @article{PoghossianJablonskiKochetal.2018, author = {Poghossian, Arshak and Jablonski, Melanie and Koch, Claudia and Bronder, Thomas and Rolka, David and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {Field-effect biosensor using virus particles as scaffolds for enzyme immobilization}, series = {Biosensors and Bioelectronics}, volume = {110}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2018.03.036}, pages = {168 -- 174}, year = {2018}, abstract = {A field-effect biosensor employing tobacco mosaic virus (TMV) particles as scaffolds for enzyme immobilization is presented. Nanotubular TMV scaffolds allow a dense immobilization of precisely positioned enzymes with retained activity. To demonstrate feasibility of this new strategy, a penicillin sensor has been developed by coupling a penicillinase with virus particles as a model system. The developed field-effect penicillin biosensor consists of an Al-p-Si-SiO₂-Ta₂O₅-TMV structure and has been electrochemically characterized in buffer solutions containing different concentrations of penicillin G. In addition, the morphology of the biosensor surface with virus particles was characterized by scanning electron microscopy and atomic force microscopy methods. The sensors possessed a high penicillin sensitivity of ~ 92 mV/dec in a nearly-linear range from 0.1 mM to 10 mM, and a low detection limit of about 50 µM. The long-term stability of the penicillin biosensor was periodically tested over a time period of about one year without any significant loss of sensitivity. The biosensor has also been successfully applied for penicillin detection in bovine milk samples.}, language = {en} } @article{SchoeningKirchnerNgetal.2010, author = {Sch{\"o}ning, Michael Josef and Kirchner, Patrick and Ng, Yue Ann and Spelthahn, Heiko and Schneider, Andreas and Henkel, Hartmut and Friedrich, Peter and Kolstad, Jens and Berger, J{\"o}rg and Keusgen, Michael}, title = {Gas sensor investigation based on a catalytically activated thin-film thermopile for H2O2 detection}, series = {Physica Status Solidi (A)}, volume = {207}, journal = {Physica Status Solidi (A)}, number = {4}, publisher = {Wiley-VCH}, address = {Berlin}, issn = {1862-6300}, doi = {10.1002/pssa.200983309}, pages = {787 -- 792}, year = {2010}, abstract = {In aseptic filling systems, hydrogen peroxide vapour is commonly used for the reduction of microbial contaminations in carton packages. In this process, the germicidal efficiency of the vapour depends especially on the H₂O₂ concentration. To monitor the H₂O₂ concentration, a calorimetric H₂O₂ gas sensor based on a catalytically activated thin-film thermopile is investigated. Two different sensor layouts, namely a circular and a linear form, as well as two various material pairs such as tungsten/nickel and gold/nickel, have been examined for the realization of a thin-film thermopile. Additionally, manganese oxide and palladium particles have been compared as responsive catalysts towards H₂O₂. The thin-film sensors have been investigated at various H₂O₂ concentrations, gas temperatures and flow rates.}, language = {en} } @article{HuckPoghossianBaeckeretal.2014, author = {Huck, Christina and Poghossian, Arshak and B{\"a}cker, Matthias and Chaudhuri, S. and Zander, W. and Schubert, J. and Begoyan, Vardges K. and Buniatyan, V. V. and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Capacitively coupled electrolyte-conductivity sensor based on high-k material of barium strontium titanate}, series = {Sensors and actuators. B: Chemical}, journal = {Sensors and actuators. B: Chemical}, number = {198}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3077 (E-Journal); 0925-4005 (Print)}, doi = {10.1016/j.snb.2014.02.103}, pages = {102 -- 109}, year = {2014}, language = {en} } @article{GrundmannDachwaldGrimmetal.2015, author = {Grundmann, Jan Thimo and Dachwald, Bernd and Grimm, Christian D. and Kahle, Ralph and Koch, Aaron Dexter and Krause, Christian and Lange, Caroline and Quantius, Dominik and Ulamec, Stephan}, title = {Spacecraft for Hypervelocity Impact Research - An Overview of Capabilities, Constraints and the Challenges of Getting There}, series = {Procedia Engineering}, volume = {Vol. 103}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.04.021}, pages = {151 -- 158}, year = {2015}, language = {en} } @article{BuniatyanAbouzarMartirosyanetal.2010, author = {Buniatyan, Vahe V. and Abouzar, Maryam H. and Martirosyan, Norayr W. and Schubert, J{\"u}rgen and Gevorgian, Spartak and Sch{\"o}ning, Michael Josef and Poghossian, Arshak}, title = {pH-sensitive properties of barium strontium titanate (BST) thin films prepared by pulsed laser deposition technique}, series = {Physica Status Solidi (A)}, volume = {207}, journal = {Physica Status Solidi (A)}, number = {4}, publisher = {Wiley-VCH}, address = {Berlin}, issn = {1862-6300}, doi = {10.1002/pssa.200983310}, pages = {824 -- 830}, year = {2010}, abstract = {pH-sensitive properties of barium strontium titanate (BST) high-k thin films as alternative gate material for field-effect capacitive (bio-)chemical sensors based on an electrolyte-insulator-semiconductor system have been investigated. The BST films of different compositions (Ba0.31Sr0.69TiO3, Ba0.25Sr0.75TiO3 and Mg-doped Ba0.8Sr0.2Mg0.1Ti0.9O3) were deposited by pulsed laser deposition technique from targets fabricated by self-propagating high-temperature synthesis. The realised sensors have been electrochemically characterised by means of impedance-spectroscopy, capacitance-voltage and constant-capacitance method. The sensors possess a Nernstian-like pH sensitivity in the concentration range between pH 3 and 11 with a response time of 5-10 s. An equivalent circuit model for the BST-based capacitive field-effect sensor is discussed.}, language = {en} } @article{TurekHeidenGuoetal.2010, author = {Turek, Monik and Heiden, Wolfgang and Guo, Sharon and Riesen, Alfred and Schubert, J{\"u}rgen and Zander, Willi and Kr{\"u}ger, Peter and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Simultaneous detection of cyanide and heavy metals for environmental analysis by means of µISEs}, series = {Physica Status Solidi (A)}, volume = {207}, journal = {Physica Status Solidi (A)}, number = {4}, publisher = {Wiley-VCH}, address = {Berlin}, issn = {1862-6300}, doi = {10.1002/pssa.200983303}, pages = {817 -- 823}, year = {2010}, abstract = {In environmental analysis, cyanide and heavy metals play an important role, because these substances are highly toxic for biological systems. They can lead to chronic and acute diseases. Due to the chemical properties of cyanide it is frequently used for industrial processes such as extraction of silver and gold. Heavy metals can be found as trace elements in nature and are often applied in industries e.g., galvanization processes. Up to now, cyanide and heavy metals can be detected by several sensors separately and their detection is often limited to laboratory investigations. In this publication, with regard to an in situ analysis, a new miniaturized silicon-based sensor system for the simultaneous detection of cyanide and heavy metals in aqueous solutions is presented that is based on chalcogenide glass-based micro ion-selective electrodes (µISEs). The µISEs are incorporated into a specially designed measuring system for the simultaneous detection of heavy metals and cyanide in solutions and validated by simultaneous measurements of Cu2+- and CN--ions, Cd2+- and CN-- ions and Pb2+- and CN--ions. The particular sensor system has shown good sensor properties in the µ-molar ion-concentration range. For simultaneous measurements in complex heavy metal and cyanide solutions an intelligent software using fuzzy logic is discussed.}, language = {en} }