@inproceedings{LeichtScholtenSteuerDankertBouffier2016, author = {Leicht-Scholten, Carmen and Steuer-Dankert, Linda and Bouffier, Anna}, title = {Facing Future Challenges: Building Engineers for Tomorrow}, series = {Conference proceedings : new perspectives in science education : 5th Conference edition, Florence, Italy, 17-18 March 2016}, booktitle = {Conference proceedings : new perspectives in science education : 5th Conference edition, Florence, Italy, 17-18 March 2016}, isbn = {978-886292-705-5}, pages = {32 -- 37}, year = {2016}, abstract = {Future engineers are increasingly confronted with the so-called Megatrends which are the big social challenges society has to cope with. These Megatrends, such as "Silver Society", "Globalization", "Mobility" and "Female Shift" require an application-oriented perspective on Diversity especially in the engineering field. Therefore, it is necessary to enable future engineers not only to look at the technical perspectives of a problem, but also to be able to see the related questions within societies they are developing their artefacts for. The aim of teaching engineering should be to prepare engineers for these requirements and to draw attention to the diverse needs in a globalized world. Bringing together technical knowledge and social competences which go beyond a mere training of the so-called "soft skills", is a new approach followed at RWTH Aachen University, one of the leading technical universities in Germany. RWTH Aachen University has established the bridging professorship "Gender and Diversity in Engineering" (GDI) which educates engineers with an interdisciplinary approach to expand engineering limits. In the frame of a sustainable teaching concept the research group under the leadership of Prof. Carmen Leicht-Scholten has developed an approach which imparts a supplication-specific Gender and Diversity expertise to engineers. In workshops students gain theoretical knowledge about Gender and Diversity and learn how to transfer their knowledge in their special field of study and later work. To substantiate this, the course participants have to solve case studies from real life. The cases which are developed in collaboration with non-profit organizations and enterprises from economy rise the students to challenges which are inspired by professional life. Evaluation shows the success of this approach as well as an increasing demand for such teaching formats.}, language = {en} } @article{SattlerRoegerSchwarzboezletal.2020, author = {Sattler, Johannes Christoph and R{\"o}ger, Marc and Schwarzb{\"o}zl, Peter and Buck, Reiner and Macke, Ansgar and Raeder, Christian and G{\"o}ttsche, Joachim}, title = {Review of heliostat calibration and tracking control methods}, series = {Solar Energy}, volume = {207}, journal = {Solar Energy}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.solener.2020.06.030}, pages = {110 -- 132}, year = {2020}, abstract = {Large scale central receiver systems typically deploy between thousands to more than a hundred thousand heliostats. During solar operation, each heliostat is aligned individually in such a way that the overall surface normal bisects the angle between the sun's position and the aim point coordinate on the receiver. Due to various tracking error sources, achieving accurate alignment ≤1 mrad for all the heliostats with respect to the aim points on the receiver without a calibration system can be regarded as unrealistic. Therefore, a calibration system is necessary not only to improve the aiming accuracy for achieving desired flux distributions but also to reduce or eliminate spillage. An overview of current larger-scale central receiver systems (CRS), tracking error sources and the basic requirements of an ideal calibration system is presented. Leading up to the main topic, a description of general and specific terms on the topics heliostat calibration and tracking control clarifies the terminology used in this work. Various figures illustrate the signal flows along various typical components as well as the corresponding monitoring or measuring devices that indicate or measure along the signal (or effect) chain. The numerous calibration systems are described in detail and classified in groups. Two tables allow the juxtaposition of the calibration methods for a better comparison. In an assessment, the advantages and disadvantages of individual calibration methods are presented.}, language = {en} } @incollection{HoffschmidtAlexopoulosRauetal.2022, author = {Hoffschmidt, Bernhard and Alexopoulos, Spiros and Rau, Christoph and Sattler, Johannes Christoph and Anthrakidis, Anette and Teixeira Boura, Cristiano Jos{\´e} and O'Connor, B. and Chico Caminos, Ricardo Alexander and Rend{\´o}n, C. and Hilger, P.}, title = {Concentrating solar power}, series = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, booktitle = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-12-819734-9}, pages = {670 -- 724}, year = {2022}, abstract = {The focus of this chapter is the production of power and the use of the heat produced from concentrated solar thermal power (CSP) systems. The chapter starts with the general theoretical principles of concentrating systems including the description of the concentration ratio, the energy and mass balance. The power conversion systems is the main part where solar-only operation and the increase in operational hours. Solar-only operation include the use of steam turbines, gas turbines, organic Rankine cycles and solar dishes. The operational hours can be increased with hybridization and with storage. Another important topic is the cogeneration where solar cooling, desalination and of heat usage is described. Many examples of commercial CSP power plants as well as research facilities from the past as well as current installed and in operation are described in detail. The chapter closes with economic and environmental aspects and with the future potential of the development of CSP around the world.}, language = {en} } @inproceedings{MayBreitbachAlexopoulosetal.2019, author = {May, Martin and Breitbach, Gerd and Alexopoulos, Spiros and Latzke, Markus and B{\"a}umer, Klaus and Uhlig, Ralf and S{\"o}hn, Matthias and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Experimental facility for investigations of wire mesh absorbers for pressurized gases}, series = {AIP Conference Proceedings}, volume = {2126}, booktitle = {AIP Conference Proceedings}, issn = {0094243X}, doi = {10.1063/1.5117547}, pages = {030035-1 -- 030035-9}, year = {2019}, language = {en} } @article{RuppHandschuhRiekeetal.2019, author = {Rupp, Matthias and Handschuh, Nils and Rieke, Christian and Kuperjans, Isabel}, title = {Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: A case study of electric buses in Germany}, series = {Applied Energy}, volume = {237}, journal = {Applied Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0306-2619}, doi = {10.1016/j.apenergy.2019.01.059}, pages = {618 -- 634}, year = {2019}, language = {en} } @incollection{BraunerVervierBrillowskietal.2022, author = {Brauner, Philipp and Vervier, Luisa and Brillowski, Florian and Dammers, Hannah and Steuer-Dankert, Linda and Schneider, Sebastian and Baier, Ralph and Ziefle, Martina and Gries, Thomas and Leicht-Scholten, Carmen and Mertens, Alexander and Nagel, Saskia K.}, title = {Organization Routines in Next Generation Manufacturing}, series = {Forecasting Next Generation Manufacturing}, booktitle = {Forecasting Next Generation Manufacturing}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-07734-0}, doi = {10.1007/978-3-031-07734-0_5}, pages = {75 -- 94}, year = {2022}, abstract = {Next Generation Manufacturing promises significant improvements in performance, productivity, and value creation. In addition to the desired and projected improvements regarding the planning, production, and usage cycles of products, this digital transformation will have a huge impact on work, workers, and workplace design. Given the high uncertainty in the likelihood of occurrence and the technical, economic, and societal impacts of these changes, we conducted a technology foresight study, in the form of a real-time Delphi analysis, to derive reliable future scenarios featuring the next generation of manufacturing systems. This chapter presents the organization dimension and describes each projection in detail, offering current case study examples and discussing related research, as well as implications for policy makers and firms. Specifically, we highlight seven areas in which the digital transformation of production will change how we work, how we organize the work within a company, how we evaluate these changes, and how employment and labor rights will be affected across company boundaries. The experts are unsure whether the use of collaborative robots in factories will replace traditional robots by 2030. They believe that the use of hybrid intelligence will supplement human decision-making processes in production environments. Furthermore, they predict that artificial intelligence will lead to changes in management processes, leadership, and the elimination of hierarchies. However, to ensure that social and normative aspects are incorporated into the AI algorithms, restricting measurement of individual performance will be necessary. Additionally, AI-based decision support can significantly contribute toward new, socially accepted modes of leadership. Finally, the experts believe that there will be a reduction in the workforce by the year 2030.}, language = {en} } @misc{ButenwegGellertReindletal.2009, author = {Butenweg, Christoph and Gellert, Christoph and Reindl, Lukas and Meskouris, Konstantin}, title = {A nonlinear method for the seismic safety verification of masonry buildings}, publisher = {National Technical University of Athens}, address = {Athen}, year = {2009}, abstract = {In order for traditional masonry to stay a competitive building material in seismically active regions there is an urgent demand for modern, deformation-based verification procedures which exploit the nonlinear load bearing reserves. The Capacity Spectrum Method (CSM) is a widely accepted design approach in the field of reinforced concrete and steel construction. It compares the seismic action with the load-bearing capacity of the building considering nonlinear material behavior with its post-peak capacity. The bearing capacity of the building is calculated iteratively using single wall capacity curves. This paper presents a new approach for the bilinear approximation of single wall capacity curves in the style of EC6/EC8 respectively FEMA 306/FEMA 356 based on recent shear wall test results of the European Collective-Research Project "ESECMaSE". The application of the CSM to masonry structures by using bilinear approximations of capacity curves as input is demonstrated on the example of a typical German residential home.}, language = {en} } @inproceedings{StollenwerkRiekeDahmenetal.2016, author = {Stollenwerk, Dominik and Rieke, Christian and Dahmen, Markus and Pieper, Martin}, title = {Biogas Production Modelling : A Control System Engineering Approach}, series = {IOP Conference Series: Earth and Environmental Science. Bd. 32}, booktitle = {IOP Conference Series: Earth and Environmental Science. Bd. 32}, issn = {1755-1315}, doi = {10.1088/1755-1315/32/1/012008}, pages = {012008/1 -- 012008/4}, year = {2016}, language = {en} } @incollection{HoffschmidtAlexopoulosRauetal.2021, author = {Hoffschmidt, Bernhard and Alexopoulos, Spiros and Rau, Christoph and Sattler, Johannes Christoph and Anthrakidis, Anette and Teixeira Boura, Cristiano Jos{\´e} and O'Connor, B. and Chico Caminos, Ricardo Alexander and Rend{\´o}n, C. and Hilger, P.}, title = {Concentrating Solar Power}, series = {Earth systems and environmental sciences}, booktitle = {Earth systems and environmental sciences}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-12-409548-9}, doi = {10.1016/B978-0-12-819727-1.00089-3}, year = {2021}, abstract = {The focus of this chapter is the production of power and the use of the heat produced from concentrated solar thermal power (CSP) systems. The chapter starts with the general theoretical principles of concentrating systems including the description of the concentration ratio, the energy and mass balance. The power conversion systems is the main part where solar-only operation and the increase in operational hours. Solar-only operation include the use of steam turbines, gas turbines, organic Rankine cycles and solar dishes. The operational hours can be increased with hybridization and with storage. Another important topic is the cogeneration where solar cooling, desalination and of heat usage is described. Many examples of commercial CSP power plants as well as research facilities from the past as well as current installed and in operation are described in detail. The chapter closes with economic and environmental aspects and with the future potential of the development of CSP around the world.}, language = {en} } @inproceedings{SchulteSchwagerNoureldinetal.2023, author = {Schulte, Jonas and Schwager, Christian and Noureldin, Kareem and May, Martin and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Gradient controlled startup procedure of a molten-salt power-to-heat energy storage plant based on dynamic process simulation}, series = {SolarPACES: Solar Power \& Chemical Energy Systems}, booktitle = {SolarPACES: Solar Power \& Chemical Energy Systems}, number = {2815 / 1}, publisher = {AIP conference proceedings / American Institute of Physics}, address = {Melville, NY}, isbn = {978-0-7354-4623-6}, issn = {1551-7616 (online)}, doi = {10.1063/5.0148741}, pages = {9 Seiten}, year = {2023}, abstract = {The integration of high temperature thermal energy storages into existing conventional power plants can help to reduce the CO2 emissions of those plants and lead to lower capital expenditures for building energy storage systems, due to the use of synergy effects [1]. One possibility to implement that, is a molten salt storage system with a powerful power-to-heat unit. This paper presents two possible control concepts for the startup of the charging system of such a facility. The procedures are implemented in a detailed dynamic process model. The performance and safety regarding the film temperatures at heat transmitting surfaces are investigated in the process simulations. To improve the accuracy in predicting the film temperatures, CFD simulations of the electrical heater are carried out and the results are merged with the dynamic model. The results show that both investigated control concepts are safe regarding the temperature limits. The gradient controlled startup performed better than the temperature-controlled startup. Nevertheless, there are several uncertainties that need to be investigated further.}, language = {en} }