@article{AlKaidyTippkoetter2016, author = {Al-Kaidy, Huschyar and Tippk{\"o}tter, Nils}, title = {Superparamagnetic hydrophobic particles as shell material for digital microfluidic droplets and proof-of-principle reaction assessments with immobilized laccase}, series = {Engineering in Life Sciences}, volume = {16}, journal = {Engineering in Life Sciences}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, doi = {10.1002/elsc.201400124}, pages = {222 -- 230}, year = {2016}, abstract = {In the field of biotechnology and molecular biology, the use of small liquid volumes has significant advantages. In particular, screening and optimization runs with acceptable amounts of expensive and hardly available catalysts, reagents, or biomolecules are feasible with microfluidic technologies. The presented new microfluidic system is based on the inclusion of small liquid volumes by a protective shell of magnetizable microparticles. Hereby, discrete aqueous microreactor drops with volumes of 1-30 μL can be formed on a simple planar surface. A digital movement and manipulation of the microreactor is performed by overlapping magnetic forces. The magnetic forces are generated by an electrical coil matrix positioned below a glass plate. With the new platform technology, several discrete reaction compartments can be moved simultaneously on one surface. Due to the magnetic fields, the reactors can even be merged to initiate reactions by mixing or positioned above surface-immobilized catalysts and then opened by magnetic force. Comparative synthesis routes of the magnetizable shell particles and superhydrophobic glass slides including their performance and stability with the reaction platform are described. The influence of diffusive mass transport during the catalyzed reaction is discussed by evaluation finite element model of the microreactor. Furthermore, a first model dye reaction of the enzyme laccase has been established.}, language = {en} } @inproceedings{BhattaraiFrotscherStaat2016, author = {Bhattarai, Aroj and Frotscher, Ralf and Staat, Manfred}, title = {Significance of fibre geometry on passive-active response of pelvic muscles to evaluate pelvic dysfunction}, series = {BioMedWomen: Proceedings of the international conference on clinical and bioengineering for women's health}, booktitle = {BioMedWomen: Proceedings of the international conference on clinical and bioengineering for women's health}, editor = {Natal Jorge, Renato}, publisher = {CRC Press}, address = {Boca Raton}, isbn = {978-1-138-02910-1}, pages = {185 -- 188}, year = {2016}, language = {en} } @inproceedings{BungValero2016, author = {Bung, Daniel Bernhard and Valero, Daniel}, title = {Application of the optical flow method to velocity determination in hydraulic structure models}, series = {Hydraulic Structures and Water System Management. 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June 2016}, booktitle = {Hydraulic Structures and Water System Management. 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June 2016}, editor = {Crookston, B. and Tullis, B.}, isbn = {978-1-884575-75-4}, doi = {10.15142/T3150628160853}, pages = {223 -- 232}, year = {2016}, language = {en} } @article{KowalskiLinderZierkeetal.2016, author = {Kowalski, Julia and Linder, Peter and Zierke, S. and Wulfen, B. van and Clemens, J. and Konstantinidis, K. and Ameres, G. and Hoffmann, R. and Mikucki, J. and Tulaczyk, S. and Funke, O. and Blandfort, D. and Espe, Clemens and Feldmann, Marco and Francke, Gero and Hiecker, S. and Plescher, Engelbert and Sch{\"o}ngarth, Sarah and Dachwald, Bernd and Digel, Ilya and Artmann, Gerhard and Eliseev, D. and Heinen, D. and Scholz, F. and Wiebusch, C. and Macht, S. and Bestmann, U. and Reineking, T. and Zetzsche, C. and Schill, K. and F{\"o}rstner, R. and Niedermeier, H. and Szumski, A. and Eissfeller, B. and Naumann, U. and Helbing, K.}, title = {Navigation technology for exploration of glacier ice with maneuverable melting probes}, series = {Cold Regions Science and Technology}, journal = {Cold Regions Science and Technology}, number = {123}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0165-232X}, doi = {10.1016/j.coldregions.2015.11.006}, pages = {53 -- 70}, year = {2016}, abstract = {The Saturnian moon Enceladus with its extensive water bodies underneath a thick ice sheet cover is a potential candidate for extraterrestrial life. Direct exploration of such extraterrestrial aquatic ecosystems requires advanced access and sampling technologies with a high level of autonomy. A new technological approach has been developed as part of the collaborative research project Enceladus Explorer (EnEx). The concept is based upon a minimally invasive melting probe called the IceMole. The force-regulated, heater-controlled IceMole is able to travel along a curved trajectory as well as upwards. Hence, it allows maneuvers which may be necessary for obstacle avoidance or target selection. Maneuverability, however, necessitates a sophisticated on-board navigation system capable of autonomous operations. The development of such a navigational system has been the focal part of the EnEx project. The original IceMole has been further developed to include relative positioning based on in-ice attitude determination, acoustic positioning, ultrasonic obstacle and target detection integrated through a high-level sensor fusion. This paper describes the EnEx technology and discusses implications for an actual extraterrestrial mission concept.}, language = {en} } @inproceedings{SteuerDankertLeichtScholten2016, author = {Steuer-Dankert, Linda and Leicht-Scholten, Carmen}, title = {Social responsibility and innovation - Key competencies for engineers}, series = {ICERI 2016: 9th International Conference of Education, Research and Innovation: Conference Proceedings : Seville (Spain), 14-16 November}, booktitle = {ICERI 2016: 9th International Conference of Education, Research and Innovation: Conference Proceedings : Seville (Spain), 14-16 November}, isbn = {978-84-617-5895-1}, issn = {2340-1095}, doi = {10.21125/iceri.2016.0353}, pages = {5967 -- 5976}, year = {2016}, abstract = {Engineers are of particular importance for the societies of tomorrow. The big social challenges society has to cope with in future, can only be mastered, if engineers link the development and innovation process closely with the requirements of people. As a result, in the frame of the innovation process engineers have to design and develop products for diverse users. Therefore, the consideration of diversity in this process is a core competence engineers should have. Implementing the consideration of diverse requirements into product design is also linked to the development of sustainable products and thus leads to social responsible research and development, the core concept formulated by the EU. For this reason, future engineers should be educated to look at the technical perspectives of a problem embedded in the related questions within societies they are developing their artefacts for. As a result, the aim of teaching engineering should be to prepare engineers for these requirements and to draw attention to the diverse needs in a globalized world. To match the competence profiles of future engineers to the global challenges and the resulting social responsibility, RWTH Aachen University, one of the leading technical universities in Germany, has established the bridging professorship "Gender and Diversity in Engineering" (GDI) which educates engineers with an interdisciplinary approach to expand engineering limits. The interdisciplinary teaching concept of the research group pursues an approach which imparts an application oriented Gender and Diversity expertise to future engineers. In the frame of an established teaching concept, which is a result of experiences and expertise of the research group, students gain theoretical knowledge about Gender and Diversity and learn how to transfer their knowledge into their later field of action. In the frame of the conference the institutional approach will be presented as well as the teaching concept which will be introduced by concrete course examples.}, language = {en} } @inproceedings{HallmannHeideckerSchlottereretal.2016, author = {Hallmann, Marcus and Heidecker, Ansgar and Schlotterer, Markus and Dachwald, Bernd}, title = {GTOC8: results and methods of team 15 DLR}, series = {26th AAS/AIAA Space Flight Mechanics Meeting, Napa, CA}, booktitle = {26th AAS/AIAA Space Flight Mechanics Meeting, Napa, CA}, year = {2016}, abstract = {This paper describes the results and methods used during the 8th Global Trajectory Optimization Competition (GTOC) of the DLR team. Trajectory optimization is crucial for most of the space missions and usually can be formulated as a global optimization problem. A lot of research has been done to different type of mission problems. The most demanding ones are low thrust transfers with e.g. gravity assist sequences. In that case the optimal control problem is combined with an integer problem. In most of the GTOCs we apply a filtering of the problem based on domain knowledge.}, language = {en} } @inproceedings{KerpenBungValeroetal.2016, author = {Kerpen, Nils B. and Bung, Daniel Bernhard and Valero, Daniel and Schlurmann, Torsten}, title = {Energy dissipation within the wave run-up at stepped revetments}, series = {8th Chinese-German Joint Symposium on Hydraulic and Ocean Engineering, Qingdao, China}, booktitle = {8th Chinese-German Joint Symposium on Hydraulic and Ocean Engineering, Qingdao, China}, pages = {6 Seiten}, year = {2016}, language = {en} } @inproceedings{JungStaat2016, author = {Jung, Alexander and Staat, Manfred}, title = {Computing olympic gold: Ski jumping as an example}, series = {1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen}, booktitle = {1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen}, editor = {Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-06-6}, doi = {10.17185/duepublico/40821}, pages = {54 -- 55}, year = {2016}, language = {en} } @article{FerreinSchifferBooysenetal.2016, author = {Ferrein, Alexander and Schiffer, Stefan and Booysen, T. and Stopforth, R.}, title = {Why it is harder to run RoboCup in South Africa: Experiences from German South African collaborations}, series = {International Journal of Advanced Robotic Systems}, volume = {13}, journal = {International Journal of Advanced Robotic Systems}, number = {5}, issn = {1729-8806}, doi = {10.1177/1729881416662789}, pages = {1 -- 13}, year = {2016}, abstract = {Robots are widely used as a vehicle to spark interest in science and technology in learners. A number of initiatives focus on this issue, for instance, the Roberta Initiative, the FIRST Lego League, the World Robot Olympiad and RoboCup Junior. Robotic competitions are valuable not only for school learners but also for university students, as the RoboCup initiative shows. Besides technical skills, the students get some project exposure and experience what it means to finish their tasks on time. But qualifying students for future high-tech areas should not only be for students from developed countries. In this article, we present our experiences with research and education in robotics within the RoboCup initiative, in Germany and South Africa; we report on our experiences with trying to get the RoboCup initiative in South Africa going. RoboCup has a huge support base of academic institutions in Germany; this is not the case in South Africa. We present our 'north-south' collaboration initiatives in RoboCup between Germany and South Africa and discuss some of the reasons why we think it is harder to run RoboCup in South Africa.}, language = {en} } @inproceedings{DuongJungFrotscheretal.2016, author = {Duong, Minh Tuan and Jung, Alexander and Frotscher, Ralf and Staat, Manfred}, title = {A 3D electromechanical FEM-based model for cardiac tissue}, series = {ECCOMAS Congress 2016, VII European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, Greece, 5-10 June 2016}, booktitle = {ECCOMAS Congress 2016, VII European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, Greece, 5-10 June 2016}, editor = {Papadrakakis, M.}, pages = {13 S.}, year = {2016}, language = {en} }