@article{HailerWeberNevelingetal.2020, author = {Hailer, Benjamin and Weber, Tobias and Neveling, Sebastian and Dera, Samuel and Arent, Jan-Christoph and Middendorf, Peter}, title = {Development of a test device to determine the frictional behavior between honeycomb and prepreg layers under realistic manufacturing conditions}, series = {Journal of Sandwich Structures \& Materials}, journal = {Journal of Sandwich Structures \& Materials}, number = {Volume 23, Issue 7}, publisher = {Sage}, address = {London}, issn = {1530-7972}, doi = {10.1177/1099636220923986}, pages = {3017 -- 3043}, year = {2020}, abstract = {In the friction tests between honeycomb with film adhesive and prepreg, the relative displacement occurs between the film adhesive and the prepreg. The film adhesive does not shift relative to the honeycomb. This is consistent with the core crush behavior where the honeycomb moves together with the film adhesive, as can be seen in Figure 2(a). The pull-through forces of the friction measurements between honeycomb and prepreg at 1 mm deformation are plotted in Figure 17(a). While the friction at 100°C is similar to the friction at 120°C, it decreases significantly at 130°C and exhibits a minimum at 140°C. At 150°C, the friction rises again slightly and then sharply at 160°C. Since the viscosity of the M18/1 prepreg resin drops significantly before it cures [23], the minimum friction at 140°C could result from a minimum viscosity of the mixture of prepreg resin and film adhesive before the bond subsequently cures. Figure 17(b) shows the mean value curve of the friction measurements at 140°C. The error bars, which represent the standard deviation, reveal the good repeatability of the tests. The force curve is approximately horizontal between 1 mm and 2 mm. The friction then slightly rises. As with interlaminar friction measurements, this could be due to the fact that resin is removed by friction and the proportion of boundary lubrication increases. Figure 18 shows the surfaces after the friction measurement. The honeycomb cell walls are clearly visible in the film adhesive. There are areas where the film adhesive is completely removed and the carrier material of the film adhesive becomes visible. In addition, the viscosity of the resin changes as the curing progresses during the friction test. This can also affect the force-displacement curve.}, language = {en} } @article{WeberEnglhardArentetal.2019, author = {Weber, Tobias and Englhard, Markus and Arent, Jan-Christoph and Hausmann, Joachim}, title = {An experimental characterization of wrinkling generated during prepreg autoclave manufacturing using caul plates}, series = {Journal of Composite Materials}, volume = {53}, journal = {Journal of Composite Materials}, number = {26-27}, issn = {1530-793X}, doi = {10.1177/0021998319846556}, pages = {3757 -- 3773}, year = {2019}, language = {en} } @phdthesis{Weber2019, author = {Weber, Tobias}, title = {Herstellprozesssimulation zur Vorhersage der Faltenbildung in der Prepreg-Autoklav-Fertigung}, publisher = {Technische Universit{\"a}t Kaiserslautern}, address = {Kaiserslautern}, isbn = {978-3-944440-24-8}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-54923}, pages = {XIV, 207 Seiten}, year = {2019}, language = {de} } @article{OttenWeberArent2018, author = {Otten, Dennis and Weber, Tobias and Arent, Jan-Christoph}, title = {Manufacturing Process Simulation - On Its Way to Industrial Application}, series = {International Journal of Aviation, Aeronautics, and Aerospace}, volume = {5}, journal = {International Journal of Aviation, Aeronautics, and Aerospace}, number = {2}, publisher = {Embry-Riddle Aeronautical University}, address = {Daytona Beach, Fla.}, issn = {2374-6793}, doi = {10.15394/ijaaa.2018.1217}, year = {2018}, abstract = {Manufacturing process simulation (MPS) has become more and more important for aviation and the automobile industry. A highly competitive market requires the use of high performance metals and composite materials in combination with reduced manufacturing cost and time as well as a minimization of the time to market for a new product. However, the use of such materials is expensive and requires sophisticated manufacturing processes. An experience based process and tooling design followed by a lengthy trial-and-error optimization is just not contemporary anymore. Instead, a tooling design process aided by simulation is used more often. This paper provides an overview of the capabilities of MPS in the fields of sheet metal forming and prepreg autoclave manufacturing of composite parts summarizing the resulting benefits for tooling design and manufacturing engineering. The simulation technology is explained briefly in order to show several simplification and optimization techniques for developing industrialized simulation approaches. Small case studies provide examples of an efficient application on an industrial scale.}, language = {en} } @article{WeberRuffStahl2017, author = {Weber, Tobias and Ruff-Stahl, Hans-Joachim K.}, title = {Advances in Composite Manufacturing of Helicopter Parts}, series = {International Journal of Aviation, Aeronautics, and Aerospace}, volume = {4}, journal = {International Journal of Aviation, Aeronautics, and Aerospace}, number = {1}, issn = {2374-6793}, doi = {10.15394/ijaaa.2017.1153}, year = {2017}, language = {en} } @article{WeberArentSteffenetal.2017, author = {Weber, Tobias and Arent, Jan-Christoph and Steffen, Lucas and Balvers, Johannes M. and Duhovic, Miro}, title = {Thermal optimization of composite autoclave molds using the shift factor approach for boundary condition estimation}, series = {Journal of Composite Materials}, volume = {51}, journal = {Journal of Composite Materials}, number = {12}, publisher = {Sage}, address = {London}, issn = {1530-793X}, doi = {10.1177/0021998317699868}, pages = {1753 -- 1767}, year = {2017}, language = {en} } @inproceedings{OttenSchmidtWeber2016, author = {Otten, D. and Schmidt, M. and Weber, Tobias}, title = {Advances in Determination of Material Parameters for Functional Simulations Based on Process Simulations}, series = {SAMPE Europe Conference 16 Liege}, booktitle = {SAMPE Europe Conference 16 Liege}, isbn = {978-1-5108-3800-0}, pages = {570 -- 577}, year = {2016}, language = {en} } @inproceedings{WeberTellisDuhovic2016, author = {Weber, Tobias and Tellis, Jane J. and Duhovic, Miro}, title = {Characterization of tool-part-interaction an interlaminar friction for manufacturing process simulation}, series = {ECCM 17, 17th European Conference on Composite Materials, M{\"u}nchen, DE, Jun 26-30, 2016}, booktitle = {ECCM 17, 17th European Conference on Composite Materials, M{\"u}nchen, DE, Jun 26-30, 2016}, isbn = {978-3-00-053387-7}, pages = {1 -- 7}, year = {2016}, language = {en} } @article{Maurischat2021, author = {Maurischat, Andreas}, title = {Algebraic independence of the Carlitz period and its hyperderivatives}, pages = {1 -- 12}, year = {2021}, language = {en} } @article{FingerGoetten2019, author = {Finger, Felix and G{\"o}tten, Falk}, title = {Neue Ans{\"a}tze f{\"u}r die Entwicklung von unbemannten Flugger{\"a}ten}, series = {Ingenieurspiegel}, volume = {2019}, journal = {Ingenieurspiegel}, number = {1}, isbn = {1868-5919}, pages = {67 -- 68}, year = {2019}, abstract = {Wie sieht das unbemannte Flugzeug von {\"U}bermorgen aus? Dieser Frage stellen sich Forscher an der Fachhochschule Aachen. Die weltweit rasant fortschreitende Entwicklung des Marktes f{\"u}r unbemannte Flugger{\"a}te (UAVs - „Unmanned Aerial Vehicles") bietet großes Potenzial f{\"u}r Wachstum und Wertsch{\"o}pfung. Unbemannte fliegende Systeme k{\"o}nnen - f{\"u}r bestimmte Anwendungsgebiete - wesentlich g{\"u}nstiger, kleiner und effizienter ausgelegt werden als bemannte L{\"o}sungen. Dabei sind sich viele Unternehmen {\"u}ber das m{\"o}gliche Potential dieser Technologie noch gar nicht bewusst.}, language = {de} }