@inproceedings{AlKaidyUlberTippkoetter2014, author = {Al-Kaidy, H. and Ulber, R. and Tippk{\"o}tter, Nils}, title = {A platform technology for the automated reaction control in magnetizable micro-fluidic droplets}, series = {Biomaterials - made in bioreactors : book of abstracts, May 26 - 28, 2014, Radisson Blu Park Hotel and Conference Dentre, Radebeul, Germany}, booktitle = {Biomaterials - made in bioreactors : book of abstracts, May 26 - 28, 2014, Radisson Blu Park Hotel and Conference Dentre, Radebeul, Germany}, publisher = {DECHEMA}, address = {Frankfurt am Main}, pages = {21 -- 22}, year = {2014}, language = {en} } @inproceedings{TippkoetterRoikaewUlber2008, author = {Tippk{\"o}tter, Nils and Roikaew, W. and Ulber, R.}, title = {An automated pilot plant for the bioengineering processing of concentrated whey}, series = {European BioPerspectives : in cooperation with BIOTECHNICA 2008 : 7 - 9 October 2008 Hannover, Germany ; book of abstracts ; abstracts, poster programme}, booktitle = {European BioPerspectives : in cooperation with BIOTECHNICA 2008 : 7 - 9 October 2008 Hannover, Germany ; book of abstracts ; abstracts, poster programme}, publisher = {Dechema}, address = {Frankfurt am Main}, pages = {98}, year = {2008}, language = {en} } @inproceedings{TippkoetterMoehringMaureretal.2013, author = {Tippk{\"o}tter, Nils and M{\"o}hring, S. and Maurer, S. and Roth, J.}, title = {Dezentrale Vorbehandlung und Verarbeitung pflanzlicher Reststoffe f{\"u}r Bioraffinerien}, series = {Kurzfassungen der Vortr{\"a}ge nach Sessions : Fr{\"u}hjahrstagung der Biotechnologen 2013, 4. - 5. M{\"a}rz 2013, Dechema-Haus, Frankfurt am Main}, booktitle = {Kurzfassungen der Vortr{\"a}ge nach Sessions : Fr{\"u}hjahrstagung der Biotechnologen 2013, 4. - 5. M{\"a}rz 2013, Dechema-Haus, Frankfurt am Main}, address = {Frankfurt am Main}, pages = {5}, year = {2013}, language = {de} } @inproceedings{Tippkoetter2013, author = {Tippk{\"o}tter, Nils}, title = {Biotechnologische Gewinnung von Wertstoffen aus Molke : BiobasedWorld - Innovation in food}, series = {Biotechnica 2013 : European biotechnology science \& industry news}, volume = {12}, booktitle = {Biotechnica 2013 : European biotechnology science \& industry news}, number = {9, special}, pages = {33 -- 50}, year = {2013}, language = {de} } @inproceedings{TippkoetterStueckmannWinkelmannetal.2007, author = {Tippk{\"o}tter, Nils and St{\"u}ckmann, H. and Winkelmann, G. and Noack, U. and Beutel, S. and Scheper, T. and Ulber, R.}, title = {Optimisation of antibody-labelling of gold colloids for their application in an immunchromatographic assay for microcystin-LR}, series = {European BioPerspectives : celebrating the 25th DECHEMA annual convention of biotechnologists ; 30 May - 1 June 2007, Cologne, Germany ; book of abstracts ; abstracts, poster programme}, booktitle = {European BioPerspectives : celebrating the 25th DECHEMA annual convention of biotechnologists ; 30 May - 1 June 2007, Cologne, Germany ; book of abstracts ; abstracts, poster programme}, publisher = {Dechema}, address = {Frankfurt am Main}, pages = {126}, year = {2007}, language = {en} } @article{DruckenmuellerGuentherElbers2018, author = {Druckenm{\"u}ller, Katharina and G{\"u}nther, Klaus and Elbers, Gereon}, title = {Near-infrared spectroscopy (NIRS) as a tool to monitor exhaust air from poultry operations}, series = {Science of the Total Environment}, volume = {630}, journal = {Science of the Total Environment}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2018.02.072}, pages = {536 -- 543}, year = {2018}, abstract = {Intensive poultry operation systems emit a considerable volume of inorganic and organic matter in the surrounding environment. Monitoring cleaning properties of exhaust air cleaning systems and to detect small but significant changes in emission characteristics during a fattening cycle is important for both emission and fattening process control. In the present study, we evaluated the potential of near-infrared spectroscopy (NIRS) combined with chemometric techniques as a monitoring tool of exhaust air from poultry operation systems. To generate a high-quality data set for evaluation, the exhaust air of two poultry houses was sampled by applying state-of-the-art filter sampling protocols. The two stables were identical except for one crucial difference, the presence or absence of an exhaust air cleaning system. In total, twenty-one exhaust air samples were collected at the two sites to monitor spectral differences caused by the cleaning device, and to follow changes in exhaust air characteristics during a fattening period. The total dust load was analyzed by gravimetric determination and included as a response variable in multivariate data analysis. The filter samples were directly measured with NIR spectroscopy. Principal component analysis (PCA), linear discriminant analysis (LDA), and factor analysis (FA) were effective in classifying the NIR exhaust air spectra according to fattening day and origin. The results indicate that the dust load and the composition of exhaust air (inorganic or organic matter) substantially influence the NIR spectral patterns. In conclusion, NIR spectroscopy as a tool is a promising and very rapid way to detect differences between exhaust air samples based on still not clearly defined circumstances triggered during a fattening period and the availability of an exhaust air cleaning system.}, language = {en} } @phdthesis{TemizArtmann2001, author = {Temiz Artmann, Ayseg{\"u}l}, title = {Sicanlarda egzersiz sonrasi oksidatif hasar ve eritrosit membran degisikliklerinin hemoreolojik etkileri}, year = {2001}, language = {mul} } @book{ArtmannTemizArtmannZhubanovaetal.2018, author = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, title = {Biological, physical and technical basics of cell engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7903-0}, pages = {xxiv, 481 Seiten ; Illustrationen, Diagramme}, year = {2018}, language = {en} } @article{MolinnusMuschallikGonzalezetal.2018, author = {Molinnus, Denise and Muschallik, Lukas and Gonzalez, Laura Osorio and Bongaerts, Johannes and Wagner, Torsten and Selmer, Thorsten and Siegert, Petra and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Development and characterization of a field-effect biosensor for the detection of acetoin}, series = {Biosensors and Bioelectronics}, volume = {115}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.bios.2018.05.023}, pages = {1 -- 6}, year = {2018}, abstract = {A capacitive electrolyte-insulator-semiconductor (EIS) field-effect biosensor for acetoin detection has been presented for the first time. The EIS sensor consists of a layer structure of Al/p-Si/SiO₂/Ta₂O₅/enzyme acetoin reductase. The enzyme, also referred to as butane-2,3-diol dehydrogenase from B. clausii DSM 8716T, has been recently characterized. The enzyme catalyzes the (R)-specific reduction of racemic acetoin to (R,R)- and meso-butane-2,3-diol, respectively. Two different enzyme immobilization strategies (cross-linking by using glutaraldehyde and adsorption) have been studied. Typical biosensor parameters such as optimal pH working range, sensitivity, hysteresis, linear concentration range and long-term stability have been examined by means of constant-capacitance (ConCap) mode measurements. Furthermore, preliminary experiments have been successfully carried out for the detection of acetoin in diluted white wine samples.}, language = {en} } @article{PilasYaziciSelmeretal.2018, author = {Pilas, Johanna and Yazici, Y. and Selmer, Thorsten and Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {Application of a portable multi-analyte biosensor for organic acid determination in silage}, series = {Sensors}, volume = {18}, journal = {Sensors}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s18051470}, pages = {12 Seiten}, year = {2018}, abstract = {Multi-analyte biosensors may offer the opportunity to perform cost-effective and rapid analysis with reduced sample volume, as compared to electrochemical biosensing of each analyte individually. This work describes the development of an enzyme-based biosensor system for multi-parametric determination of four different organic acids. The biosensor array comprises five working electrodes for simultaneous sensing of ethanol, formate, d-lactate, and l-lactate, and an integrated counter electrode. Storage stability of the biosensor was evaluated under different conditions (stored at +4 °C in buffer solution and dry at -21 °C, +4 °C, and room temperature) over a period of 140 days. After repeated and regular application, the individual sensing electrodes exhibited the best stability when stored at -21 °C. Furthermore, measurements in silage samples (maize and sugarcane silage) were conducted with the portable biosensor system. Comparison with a conventional photometric technique demonstrated successful employment for rapid monitoring of complex media.}, language = {en} }