@inproceedings{HeringUlberTippkoetter2016, author = {Hering, T. and Ulber, Roland and Tippk{\"o}tter, Nils}, title = {Development of a screening system for antimicrobial surfaces}, series = {New frontiers of biotech-processes (Himmelfahrtstagung) : 02-04 May 2016, Rhein-Mosel-Halle, Koblenz/Germany}, booktitle = {New frontiers of biotech-processes (Himmelfahrtstagung) : 02-04 May 2016, Rhein-Mosel-Halle, Koblenz/Germany}, publisher = {DECHEMA}, address = {Frankfurt am Main}, pages = {129}, year = {2016}, language = {en} } @inproceedings{RothMoehringTippkoetter2016, author = {Roth, J. and M{\"o}hring, S. and Tippk{\"o}tter, Nils}, title = {Characterization and evaluation of lignocellulosic biomass 130 hydrolysates for ABE fermentation}, series = {New frontiers of biotech-processes (Himmelfahrtstagung) : 02-04 May 2016, Rhein-Mosel-Halle, Koblenz/Germany}, booktitle = {New frontiers of biotech-processes (Himmelfahrtstagung) : 02-04 May 2016, Rhein-Mosel-Halle, Koblenz/Germany}, publisher = {DECHEMA}, address = {Frankfurt am Main}, pages = {130}, year = {2016}, language = {en} } @inproceedings{MoehringWulfhorstRothetal.2016, author = {M{\"o}hring, S. and Wulfhorst, H. and Roth, J. and Tippk{\"o}tter, Nils}, title = {Pretreatment strategies for lignocellulosic biomass}, series = {New frontiers of biotech-processes (Himmelfahrtstagung) : 02-04 May 2016, Rhein-Mosel-Halle, Koblenz/Germany}, booktitle = {New frontiers of biotech-processes (Himmelfahrtstagung) : 02-04 May 2016, Rhein-Mosel-Halle, Koblenz/Germany}, publisher = {DECHEMA}, address = {Frankfurt am Main}, pages = {131}, year = {2016}, language = {en} } @inproceedings{CapitainHeringTippkoetteretal.2016, author = {Capitain, C. and Hering, T. and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Enzymatic polymerization of lignin model compounds and solubilized lignin in an aqueous ethanol extract}, series = {New frontiers of biotech-processes (Himmelfahrtstagung) : 02-04 May 2016, Rhein-Mosel-Halle, Koblenz/Germany}, booktitle = {New frontiers of biotech-processes (Himmelfahrtstagung) : 02-04 May 2016, Rhein-Mosel-Halle, Koblenz/Germany}, publisher = {DECHEMA}, address = {Frankfurt am Main}, pages = {151 -- 152}, year = {2016}, language = {en} } @article{EckertRudolphGuoetal.2018, author = {Eckert, Alexander and Rudolph, Tobias and Guo, Jiaqi and Mang, Thomas and Walther, Andreas}, title = {Exceptionally Ductile and Tough Biomimetic Artificial Nacre with Gas Barrier Function}, series = {Advanced Materials}, volume = {30}, journal = {Advanced Materials}, number = {32}, publisher = {Wiley-VCH}, doi = {10.1002/adma.201802477}, pages = {Article number 1802477}, year = {2018}, abstract = {Synthetic mimics of natural high-performance structural materials have shown great and partly unforeseen opportunities for the design of multifunctional materials. For nacre-mimetic nanocomposites, it has remained extraordinarily challenging to make ductile materials with high stretchability at high fractions of reinforcements, which is however of crucial importance for flexible barrier materials. Here, highly ductile and tough nacre-mimetic nanocomposites are presented, by implementing weak, but many hydrogen bonds in a ternary nacre-mimetic system consisting of two polymers (poly(vinyl amine) and poly(vinyl alcohol)) and natural nanoclay (montmorillonite) to provide efficient energy dissipation and slippage at high nanoclay content (50 wt\%). Tailored interactions enable exceptional combinations of ductility (close to 50\% strain) and toughness (up to 27.5 MJ m⁻³). Extensive stress whitening, a clear sign of high internal dynamics at high internal cohesion, can be observed during mechanical deformation, and the materials can be folded like paper into origami planes without fracture. Overall, the new levels of ductility and toughness are unprecedented in highly reinforced bioinspired nanocomposites and are of critical importance to future applications, e.g., as barrier materials needed for encapsulation and as a printing substrate for flexible organic electronics.}, language = {en} } @article{MuellerBeckersMussmannetal.2018, author = {M{\"u}ller, Janina and Beckers, Mario and Mußmann, Nina and Bongaerts, Johannes and B{\"u}chs, Jochen}, title = {Elucidation of auxotrophic deficiencies of Bacillus pumilus DSM 18097 to develop a defined minimal medium}, series = {Microbial Cell Factories}, volume = {17}, journal = {Microbial Cell Factories}, number = {1}, publisher = {BioMed Central}, issn = {1475-2859}, doi = {10.1186/s12934-018-0956-1}, pages = {Article No. 106}, year = {2018}, abstract = {Background Culture media containing complex compounds like yeast extract or peptone show numerous disadvantages. The chemical composition of the complex compounds is prone to significant variations from batch to batch and quality control is difficult. Therefore, the use of chemically defined media receives more and more attention in commercial fermentations. This concept results in better reproducibility, it simplifies downstream processing of secreted products and enable rapid scale-up. Culturing bacteria with unknown auxotrophies in chemically defined media is challenging and often not possible without an extensive trial-and-error approach. In this study, a respiration activity monitoring system for shake flasks and its recent version for microtiter plates were used to clarify unknown auxotrophic deficiencies in the model organism Bacillus pumilus DSM 18097. Results Bacillus pumilus DSM 18097 was unable to grow in a mineral medium without the addition of complex compounds. Therefore, a rich chemically defined minimal medium was tested containing basically all vitamins, amino acids and nucleobases, which are essential ingredients of complex components. The strain was successfully cultivated in this medium. By monitoring of the respiration activity, nutrients were supplemented to and omitted from the rich chemically defined medium in a rational way, thus enabling a systematic and fast determination of the auxotrophic deficiencies. Experiments have shown that the investigated strain requires amino acids, especially cysteine or histidine and the vitamin biotin for growth. Conclusions The introduced method allows an efficient and rapid identification of unknown auxotrophic deficiencies and can be used to develop a simple chemically defined tailor-made medium. B. pumilus DSM 18097 was chosen as a model organism to demonstrate the method. However, the method is generally suitable for a wide range of microorganisms. By combining a systematic combinatorial approach based on monitoring the respiration activity with cultivation in microtiter plates, high throughput experiments with high information content can be conducted. This approach facilitates media development, strain characterization and cultivation of fastidious microorganisms in chemically defined minimal media while simultaneously reducing the experimental effort.}, language = {en} } @article{RoehlenPilasDahmenetal.2018, author = {R{\"o}hlen, Desiree and Pilas, Johanna and Dahmen, Markus and Keusgen, Michael and Selmer, Thorsten and Sch{\"o}ning, Michael Josef}, title = {Toward a Hybrid Biosensor System for Analysis of Organic and Volatile Fatty Acids in Fermentation Processes}, series = {Frontiers in Chemistry}, journal = {Frontiers in Chemistry}, number = {6}, publisher = {Frontiers}, address = {Lausanne}, doi = {10.3389/fchem.2018.00284}, pages = {Artikel 284}, year = {2018}, abstract = {Monitoring of organic acids (OA) and volatile fatty acids (VFA) is crucial for the control of anaerobic digestion. In case of unstable process conditions, an accumulation of these intermediates occurs. In the present work, two different enzyme-based biosensor arrays are combined and presented for facile electrochemical determination of several process-relevant analytes. Each biosensor utilizes a platinum sensor chip (14 × 14 mm²) with five individual working electrodes. The OA biosensor enables simultaneous measurement of ethanol, formate, d- and l-lactate, based on a bi-enzymatic detection principle. The second VFA biosensor provides an amperometric platform for quantification of acetate and propionate, mediated by oxidation of hydrogen peroxide. The cross-sensitivity of both biosensors toward potential interferents, typically present in fermentation samples, was investigated. The potential for practical application in complex media was successfully demonstrated in spiked sludge samples collected from three different biogas plants. Thereby, the results obtained by both of the biosensors were in good agreement to the applied reference measurements by photometry and gas chromatography, respectively. The proposed hybrid biosensor system was also used for long-term monitoring of a lab-scale biogas reactor (0.01 m³) for a period of 2 months. In combination with typically monitored parameters, such as gas quality, pH and FOS/TAC (volatile organic acids/total anorganic carbonate), the amperometric measurements of OA and VFA concentration could enhance the understanding of ongoing fermentation processes.}, language = {en} } @inproceedings{HoffmannNierenGaebetal.2019, author = {Hoffmann, Katharina and Nieren, Monika and G{\"a}b, Martina and Kasper, Anna and Elbers, Gereon}, title = {The potential of near infrared spectroscopy (NIRS) for the environmental biomonitoring of plants}, series = {International conference on Life Sciences and Technology}, volume = {276}, booktitle = {International conference on Life Sciences and Technology}, number = {012009}, issn = {1755-1315}, doi = {10.1088/1755-1315/276/1/012009}, pages = {1 -- 3}, year = {2019}, abstract = {In the current environmental condition, the increase in pollution of the air, water, and soil indirectly will induce plants stress and decrease vegetation growth rate. These issues pay more attention to be solved by scientists worldwide. The higher level of chemical pollutants also induced the gradual changes in plants metabolism and decreased enzymatic activity. Importantly, environmental biomonitoring may play a pivotal contribution to prevent biodiversity degradation and plants stress due to pollutant exposure. Several previous studies have been done to monitor the effect of environmental changes on plants growth. Among that, Near Infrared spectroscopy (NIRS) offers an alternative way to observe the significant alteration of plant physiology caused by environmental damage related to pollution. Impairment of photosynthesis, nutrient and oxidative imbalances, and mutagenesis.}, language = {en} } @article{SchiffelsSelmer2019, author = {Schiffels, Johannes and Selmer, Thorsten}, title = {Combinatorial assembly of ferredoxin-linked modules in Escherichia coli yields a testing platform for Rnf-complexes}, series = {Biotechnology and Bioengineering}, journal = {Biotechnology and Bioengineering}, number = {accepted article}, publisher = {Wiley}, address = {Weinheim}, doi = {10.1002/bit.27079}, pages = {1 -- 36}, year = {2019}, language = {en} } @article{EngelBayerHoltmannetal.2019, author = {Engel, Mareike and Bayer, Hendrik and Holtmann, Dirk and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Flavin secretion of Clostridium acetobutylicum in a bioelectrochemical system - Is an iron limitation involved?}, series = {Bioelectrochemistry}, journal = {Bioelectrochemistry}, number = {In Press, Accepted Manuscript}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1567-5394}, doi = {10.1016/j.bioelechem.2019.05.014}, year = {2019}, language = {en} }