@inproceedings{KaschSchmidtEichleretal.2020, author = {Kasch, Susanne and Schmidt, Thomas and Eichler, Fabian and Thurn, Laura and Jahn, Simon and Bremen, Sebastian}, title = {Solution approaches and process concepts for powder bed-based melting of glass}, series = {Industrializing Additive Manufacturing. Proceedings of AMPA2020}, booktitle = {Industrializing Additive Manufacturing. Proceedings of AMPA2020}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-54333-4 (Print)}, doi = {10.1007/978-3-030-54334-1_7}, pages = {82 -- 95}, year = {2020}, abstract = {In the study, the process chain of additive manufacturing by means of powder bed fusion will be presented based on the material glass. In order to reliably process components additively, new concepts with different solutions were developed and investigated. Compared to established metallic materials, the properties of glass materials differ significantly. Therefore, the process control was adapted to the material glass in the investigations. With extensive parameter studies based on various glass powders such as borosilicate glass and quartz glass, scientifically proven results on powder bed fusion of glass are presented. Based on the determination of the particle properties with different methods, extensive investigations are made regarding the melting behavior of glass by means of laser beams. Furthermore, the experimental setup was steadily expanded. In addition to the integration of coaxial temperature measurement and regulation, preheating of the building platform is of major importance. This offers the possibility to perform 3D printing at the transformation temperatures of the glass materials. To improve the component's properties, the influence of a subsequent heat treatment was also investigated. The experience gained was incorporated into a new experimental system, which allows a much better exploration of the 3D printing of glass. Currently, studies are being conducted to improve surface texture, building accuracy, and geometrical capabilities using three-dimensional specimen. The contribution shows the development of research in the field of 3D printing of glass, gives an insight into the machine and process engineering as well as an outlook on the possibilities and applications.}, language = {en} } @article{EngemannCoenenDawaretal.2021, author = {Engemann, Heiko and C{\"o}nen, Patrick and Dawar, Harshal and Du, Shengzhi and Kallweit, Stephan}, title = {A robot-assisted large-scale inspection of wind turbine blades in manufacturing using an autonomous mobile manipulator}, series = {Applied Sciences}, volume = {11}, journal = {Applied Sciences}, number = {19}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app11199271}, pages = {1 -- 22}, year = {2021}, abstract = {Wind energy represents the dominant share of renewable energies. The rotor blades of a wind turbine are typically made from composite material, which withstands high forces during rotation. The huge dimensions of the rotor blades complicate the inspection processes in manufacturing. The automation of inspection processes has a great potential to increase the overall productivity and to create a consistent reliable database for each individual rotor blade. The focus of this paper is set on the process of rotor blade inspection automation by utilizing an autonomous mobile manipulator. The main innovations include a novel path planning strategy for zone-based navigation, which enables an intuitive right-hand or left-hand driving behavior in a shared human-robot workspace. In addition, we introduce a new method for surface orthogonal motion planning in connection with large-scale structures. An overall execution strategy controls the navigation and manipulation processes of the long-running inspection task. The implemented concepts are evaluated in simulation and applied in a real-use case including the tip of a rotor blade form.}, language = {en} } @inproceedings{EngemannBadriWenningetal.2019, author = {Engemann, Heiko and Badri, Sriram and Wenning, Marius and Kallweit, Stephan}, title = {Implementation of an Autonomous Tool Trolley in a Production Line}, series = {Advances in Service and Industrial Robotics. RAAD 2019. Advances in Intelligent Systems and Computing, vol 980}, booktitle = {Advances in Service and Industrial Robotics. RAAD 2019. Advances in Intelligent Systems and Computing, vol 980}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-19648-6}, doi = {10.1007/978-3-030-19648-6_14}, pages = {117 -- 125}, year = {2019}, language = {en} } @article{SchwarzGebhardtSchleseretal.2019, author = {Schwarz, Alexander and Gebhardt, Andreas and Schleser, Markus and Popoola, Patricia}, title = {New Welding Joint Geometries Manufactured by Powder Bed Fusion from 316L}, series = {Materials Performance and Characterization 8}, journal = {Materials Performance and Characterization 8}, number = {in press}, issn = {2379-1365}, doi = {10.1520/MPC20180096}, year = {2019}, language = {en} } @article{CosmaKesslerGebhardtetal.2020, author = {Cosma, Cosmin and Kessler, Julia and Gebhardt, Andreas and Campbell, Ian and Balc, Nicolae}, title = {Improving the Mechanical Strength of Dental Applications and Lattice Structures SLM Processed}, series = {Materials}, volume = {13}, journal = {Materials}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {1996-1944}, doi = {10.3390/ma13040905}, pages = {1 -- 18}, year = {2020}, abstract = {To manufacture custom medical parts or scaffolds with reduced defects and high mechanical characteristics, new research on optimizing the selective laser melting (SLM) parameters are needed. In this work, a biocompatible powder, 316L stainless steel, is characterized to understand the particle size, distribution, shape and flowability. Examination revealed that the 316L particles are smooth, nearly spherical, their mean diameter is 39.09 μm and just 10\% of them hold a diameter less than 21.18 μm. SLM parameters under consideration include laser power up to 200 W, 250-1500 mm/s scanning speed, 80 μm hatch spacing, 35 μm layer thickness and a preheated platform. The effect of these on processability is evaluated. More than 100 samples are SLM-manufactured with different process parameters. The tensile results show that is possible to raise the ultimate tensile strength up to 840 MPa, adapting the SLM parameters for a stable processability, avoiding the technological defects caused by residual stress. Correlating with other recent studies on SLM technology, the tensile strength is 20\% improved. To validate the SLM parameters and conditions established, complex bioengineering applications such as dental bridges and macro-porous grafts are SLM-processed, demonstrating the potential to manufacture medical products with increased mechanical resistance made of 316L.}, language = {en} } @inproceedings{UlmerBraunLaietal.2019, author = {Ulmer, Jessica and Braun, Sebastian and Lai, Chow Yin and Cheng, Chi-Tsun and Wollert, J{\"o}rg}, title = {Generic integration of VR and AR in product lifecycles based on CAD models}, series = {Proceedings of The 23rd World Multi-Conference on Systemics, Cybernetics and Informatics: WMSCI 2019}, booktitle = {Proceedings of The 23rd World Multi-Conference on Systemics, Cybernetics and Informatics: WMSCI 2019}, year = {2019}, language = {en} } @inproceedings{GerhardsSchleserOttenetal.2019, author = {Gerhards, Benjamin and Schleser, Markus and Otten,, Christian and Schwarz, Alexander and Gebhardt, Andreas}, title = {Innovative Laser Beam Joining Technology for Additive Manufactured Parts}, series = {Conference Proceedings 72nd IIW Annual Assembly and International Conference, 7-12 July 2019, Bratislava}, booktitle = {Conference Proceedings 72nd IIW Annual Assembly and International Conference, 7-12 July 2019, Bratislava}, pages = {1 -- 8}, year = {2019}, language = {en} } @inproceedings{GerhardsSchleserOtten2019, author = {Gerhards, Benjamin and Schleser, Markus and Otten, Christian}, title = {Advancements of mobile vacuum laser welding for industrial thick sheet applications}, series = {Conference Proceedings 72nd IIW Annual Assembly and International Conference, 7-12 July 2019, Bratislava}, booktitle = {Conference Proceedings 72nd IIW Annual Assembly and International Conference, 7-12 July 2019, Bratislava}, pages = {1 -- 8}, year = {2019}, language = {en} } @inproceedings{BraunChengLaietal.2019, author = {Braun, Sebastian and Cheng, Chi-Tsun and Lai, Chow Yin and Wollert, J{\"o}rg}, title = {Microservice Architecture for Automation - Realization by the example of a model-factory's manufacturing execution system}, series = {Proceedings of the 23rd World Multi-Conference on Systemics, Cybernetics and Informatics: WMSCI 2019}, booktitle = {Proceedings of the 23rd World Multi-Conference on Systemics, Cybernetics and Informatics: WMSCI 2019}, pages = {33 -- 37}, year = {2019}, language = {en} } @incollection{EngemannDuKallweitetal.2020, author = {Engemann, Heiko and Du, Shengzhi and Kallweit, Stephan and Ning, Chuanfang and Anwar, Saqib}, title = {AutoSynPose: Automatic Generation of Synthetic Datasets for 6D Object Pose Estimation}, series = {Machine Learning and Artificial Intelligence. Proceedings of MLIS 2020}, booktitle = {Machine Learning and Artificial Intelligence. Proceedings of MLIS 2020}, publisher = {IOS Press}, address = {Amsterdam}, isbn = {978-1-64368-137-5}, doi = {10.3233/FAIA200770}, pages = {89 -- 97}, year = {2020}, abstract = {We present an automated pipeline for the generation of synthetic datasets for six-dimension (6D) object pose estimation. Therefore, a completely automated generation process based on predefined settings is developed, which enables the user to create large datasets with a minimum of interaction and which is feasible for applications with a high object variance. The pipeline is based on the Unreal 4 (UE4) game engine and provides a high variation for domain randomization, such as object appearance, ambient lighting, camera-object transformation and distractor density. In addition to the object pose and bounding box, the metadata includes all randomization parameters, which enables further studies on randomization parameter tuning. The developed workflow is adaptable to other 3D objects and UE4 environments. An exemplary dataset is provided including five objects of the Yale-CMU-Berkeley (YCB) object set. The datasets consist of 6 million subsegments using 97 rendering locations in 12 different UE4 environments. Each dataset subsegment includes one RGB image, one depth image and one class segmentation image at pixel-level.}, language = {en} }