@inproceedings{WildCzupallaFoerstner2021, author = {Wild, Dominik and Czupalla, Markus and F{\"o}rstner, Roger}, title = {Modeling, prediction and test of additive manufactured integral structures with embedded lattice and phase change material applying Infused Thermal Solutions (ITS)}, series = {ICES104: Advances in Thermal Control Technology}, booktitle = {ICES104: Advances in Thermal Control Technology}, publisher = {Texas Tech University}, address = {Lubbock, Tex.}, pages = {12 Seiten}, year = {2021}, abstract = {Infused Thermal Solutions (ITS) introduces a method for passive thermal control to stabilize structural components thermally without active heating and cooling systems, but with phase change material (PCM) for thermal energy storage (TES), in combination with lattice - both embedded in additive manufactured functional structures. In this ITS follow-on paper a thermal model approach and associated predictions are presented, related on the ITS functional breadboards developed at FH Aachen. Predictive TES by PCM is provided by a specially developed ITS PCM subroutine, which is applicable in ESATAN. The subroutine is based on the latent heat storage (LHS) method to numerically embed thermo-physical PCM behavior. Furthermore, a modeling approach is introduced to numerically consider the virtual PCM/lattice nodes within the macro-encapsulated PCM voids of the double wall ITS design. Related on these virtual nodes, in-plane and out-of-plane conductive links are defined. The recent additive manufactured ITS breadboard series are thermally cycled in the thermal vacuum chamber, both with and without embedded PCM. Related on breadboard hardware tests, measurement results are compared with predictions and are subsequently correlated. The results of specific simulations and measurements are presented. Recent predictive results of star tracker analyses are also presented in ICES-2021-106, based on this ITS PCM subroutine.}, language = {en} } @inproceedings{KohlbergerWildKasperetal.2021, author = {Kohlberger, David-Sharif and Wild, Dominik and Kasper, Stefan and Czupalla, Markus}, title = {Modeling and analyses of a thermal passively stabilized LEO/GEO star tracker with embedded phase change material applying the Infused Thermal Solutions (ITS) method}, series = {ICES202: Satellite, Payload, and Instrument Thermal Control}, booktitle = {ICES202: Satellite, Payload, and Instrument Thermal Control}, publisher = {Texas Tech University}, address = {Lubbock, Tex.}, pages = {12 Seiten}, year = {2021}, abstract = {Phase change materials offer a way of storing excess heat and releasing it when it is needed. They can be utilized as a method to control thermal behavior without the need for additional energy. This work focuses on exploring the potential of using phase change materials to passively control the thermal behavior of a star tracker by infusing it with a fitting phase change material. Based on the numerical model of the star trackers thermal behavior using ESATAN-TMS without implemented phase change material, a fitting phase change material for selected orbits is chosen and implemented in the thermal model. The altered thermal behavior of the numerical model after the implementation is analyzed for different amounts of the chosen phase change materials using an ESATAN-based subroutine developed by the FH Aachen. The PCM-modelling-subroutine is explained in the paper ICES-2021-110. The results show that an increasing amount of phase change material increasingly damps temperature oscillations. Using an integral part structure some of the mass increase can be compensated.}, language = {en} } @article{HacklBuessKammerlohretal.2021, author = {Hackl, Michael and Buess, Eduard and Kammerlohr, Sandra and Nacov, Julia and Staat, Manfred and Leschinger, Tim and M{\"u}ller, Lars P. and Wegmann, Kilian}, title = {A "comma sign"-directed subscapularis repair in anterosuperior rotator cuff tears yields biomechanical advantages in a cadaveric model}, series = {The american journal of sports medicine}, volume = {49}, journal = {The american journal of sports medicine}, number = {12}, publisher = {Sage}, address = {London}, issn = {1552-3365}, doi = {10.1177/03635465211031506}, pages = {3212 -- 3217}, year = {2021}, abstract = {Background: Additional stabilization of the "comma sign" in anterosuperior rotator cuff repair has been proposed to provide biomechanical benefits regarding stability of the repair. Purpose: This in vitro investigation aimed to investigate the influence of a comma sign-directed reconstruction technique for anterosuperior rotator cuff tears on the primary stability of the subscapularis tendon repair. Study Design: Controlled laboratory study. Methods: A total of 18 fresh-frozen cadaveric shoulders were used in this study. Anterosuperior rotator cuff tears (complete full-thickness tear of the supraspinatus and subscapularis tendons) were created, and supraspinatus repair was performed with a standard suture bridge technique. The subscapularis was repaired with either a (1) single-row or (2) comma sign technique. A high-resolution 3D camera system was used to analyze 3-mm and 5-mm gap formation at the subscapularis tendon-bone interface upon incremental cyclic loading. Moreover, the ultimate failure load of the repair was recorded. A Mann-Whitney test was used to assess significant differences between the 2 groups. Results: The comma sign repair withstood significantly more loading cycles than the single-row repair until 3-mm and 5-mm gap formation occurred (P≤ .047). The ultimate failure load did not reveal any significant differences when the 2 techniques were compared (P = .596). Conclusion: The results of this study show that additional stabilization of the comma sign enhanced the primary stability of subscapularis tendon repair in anterosuperior rotator cuff tears. Although this stabilization did not seem to influence the ultimate failure load, it effectively decreased the micromotion at the tendon-bone interface during cyclic loading. Clinical Relevance: The proposed technique for stabilization of the comma sign has shown superior biomechanical properties in comparison with a single-row repair and might thus improve tendon healing. Further clinical research will be necessary to determine its influence on the functional outcome.}, language = {en} } @article{Staat2021, author = {Staat, Manfred}, title = {An extension strain type Mohr-Coulomb criterion}, series = {Rock mechanics and rock engineering}, volume = {54}, journal = {Rock mechanics and rock engineering}, number = {12}, publisher = {Springer Nature}, address = {Cham}, issn = {1434-453X}, doi = {10.1007/s00603-021-02608-7}, pages = {6207 -- 6233}, year = {2021}, abstract = {Extension fractures are typical for the deformation under low or no confining pressure. They can be explained by a phenomenological extension strain failure criterion. In the past, a simple empirical criterion for fracture initiation in brittle rock has been developed. In this article, it is shown that the simple extension strain criterion makes unrealistic strength predictions in biaxial compression and tension. To overcome this major limitation, a new extension strain criterion is proposed by adding a weighted principal shear component to the simple criterion. The shear weight is chosen, such that the enriched extension strain criterion represents the same failure surface as the Mohr-Coulomb (MC) criterion. Thus, the MC criterion has been derived as an extension strain criterion predicting extension failure modes, which are unexpected in the classical understanding of the failure of cohesive-frictional materials. In progressive damage of rock, the most likely fracture direction is orthogonal to the maximum extension strain leading to dilatancy. The enriched extension strain criterion is proposed as a threshold surface for crack initiation CI and crack damage CD and as a failure surface at peak stress CP. Different from compressive loading, tensile loading requires only a limited number of critical cracks to cause failure. Therefore, for tensile stresses, the failure criteria must be modified somehow, possibly by a cut-off corresponding to the CI stress. Examples show that the enriched extension strain criterion predicts much lower volumes of damaged rock mass compared to the simple extension strain criterion.}, language = {en} } @incollection{EngelmannShashaSlabu2021, author = {Engelmann, Ulrich M. and Shasha, Carolyn and Slabu, Ioana}, title = {Magnetic nanoparticle relaxation in biomedical application: focus on simulating nanoparticle heating}, series = {Magnetic nanoparticles in human health and medicine}, booktitle = {Magnetic nanoparticles in human health and medicine}, publisher = {Wiley-Blackwell}, address = {Hoboken, New Jeersey}, isbn = {978-1-119-75467-1}, pages = {327 -- 354}, year = {2021}, language = {en} } @incollection{Kurz2021, author = {Kurz, Melanie}, title = {Zur Multikausalit{\"a}t von Designentscheidungen - eine Beispielsammlung}, series = {Designentscheidungen: {\"u}ber Begr{\"u}ndungen im Entwurfsprozess}, booktitle = {Designentscheidungen: {\"u}ber Begr{\"u}ndungen im Entwurfsprozess}, publisher = {avedition}, address = {Stuttgart}, isbn = {978-3-89986-353-6}, pages = {22 -- 43}, year = {2021}, language = {de} } @inproceedings{BornheimGriegerBialonski2021, author = {Bornheim, Tobias and Grieger, Niklas and Bialonski, Stephan}, title = {FHAC at GermEval 2021: Identifying German toxic, engaging, and fact-claiming comments with ensemble learning}, series = {Proceedings of the GermEval 2021 Workshop on the Identification of Toxic, Engaging, and Fact-Claiming Comments : 17th Conference on Natural Language Processing KONVENS 2021}, booktitle = {Proceedings of the GermEval 2021 Workshop on the Identification of Toxic, Engaging, and Fact-Claiming Comments : 17th Conference on Natural Language Processing KONVENS 2021}, publisher = {Heinrich Heine University}, address = {D{\"u}sseldorf}, doi = {10.48415/2021/fhw5-x128}, pages = {105 -- 111}, year = {2021}, language = {en} } @book{KurzSchwer2021, author = {Kurz, Melanie and Schwer, Thilo}, title = {Designentscheidungen : {\"u}ber Begr{\"u}ndungen im Entwurfsprozess / herausgegeben von Melanie Kurz und Thilo Schwer}, series = {Schriften / Gesellschaft f{\"u}r Designgeschichte}, journal = {Schriften / Gesellschaft f{\"u}r Designgeschichte}, publisher = {avedition}, address = {Stuttgart}, isbn = {978-3-89986-353-6}, pages = {143 Seiten : Illustrationen}, year = {2021}, language = {de} } @article{TemizArtmannKurulgandemirciFıratetal.2021, author = {Temiz Artmann, Ayseg{\"u}l and Kurulgan demirci, Eylem and F{\i}rat, Ipek Seda and Oflaz, Hakan and Artmann, Gerhard}, title = {Recombinant activated protein C (rhAPC) affects lipopolysaccharide-induced mechanical compliance changes and beat frequency of mESC-derived cardiomyocyte monolayers}, series = {SHOCK}, journal = {SHOCK}, publisher = {Wolters Kluwer}, address = {K{\"o}ln}, issn = {1540-0514}, doi = {10.1097/SHK.0000000000001845}, year = {2021}, language = {en} } @article{KaschSchmidtJahnetal.2021, author = {Kasch, Susanne and Schmidt, Thomas and Jahn, Simon and Eichler, Fabian and Thurn, Laura and Bremen, Sebastian}, title = {L{\"o}sungsans{\"a}tze und Verfahrenskonzepte zum Laserstrahlschmelzen von Glas}, series = {Schweissen und Schneiden}, volume = {73}, journal = {Schweissen und Schneiden}, number = {Heft 1-2}, publisher = {DVS Verlag}, address = {D{\"u}sseldorf}, isbn = {0036-7184}, pages = {32 -- 39}, year = {2021}, language = {de} }