@article{FateriGebhardt2015, author = {Fateri, Miranda and Gebhardt, Andreas}, title = {Selective Laser Melting of Soda-Lime Glass Powder}, series = {International Journal of Applied Ceramic Technology}, volume = {12}, journal = {International Journal of Applied Ceramic Technology}, number = {1}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {1744-7402}, doi = {10.1111/ijac.12338}, pages = {53 -- 61}, year = {2015}, language = {en} } @article{RieperGebhardtStucker2016, author = {Rieper, Harald and Gebhardt, Andreas and Stucker, Brent}, title = {Selective Laser Melting of the Eutectic Silver-Copper Alloy Ag 28 wt \% Cu}, series = {RTejournal - Forum f{\"u}r Rapid Technologie}, volume = {13}, journal = {RTejournal - Forum f{\"u}r Rapid Technologie}, issn = {1614-0923}, url = {http://nbn-resolving.de/nbn:de:0009-2-44141}, year = {2016}, abstract = {The aim of this work was to perform a detailed investigation of the use of Selective Laser Melting (SLM) technology to process eutectic silver-copper alloy Ag 28 wt. \% Cu (also called AgCu28). The processing occurred with a Realizer SLM 50 desktop machine. The powder analysis (SEM-topography, EDX, particle distribution) was reported as well as the absorption rates for the near-infrared (NIR) spectrum. Microscope imaging showed the surface topography of the manufactured parts. Furthermore, microsections were conducted for the analysis of porosity. The Design of Experiments approach used the response surface method in order to model the statistical relationship between laser power, spot distance and pulse time.}, language = {en} } @inproceedings{GabrielliMathiesGrossmannetal.2015, author = {Gabrielli, Roland Antonius and Mathies, Johannes and Großmann, Agnes and Herdrich, Georg and Fasoulas, Stefanos and Middendorf, Peter and Fateri, Miranda and Gebhardt, Andreas}, title = {Space Propulsion Considerations for a Lunar Take Off Industry Based on Regolith}, series = {International Symposium on Space Technology and Science (ISTS). July 2015, Kobe, Japan}, booktitle = {International Symposium on Space Technology and Science (ISTS). July 2015, Kobe, Japan}, year = {2015}, language = {en} } @article{KunkelGebhardtMpofuetal.2018, author = {Kunkel, Maximilian Hugo and Gebhardt, Andreas and Mpofu, Khumbaulani and Kallweit, Stephan}, title = {Statistical assessment of mechanical properties of selective laser melted specimens of stainless steel}, series = {The International Journal of Advanced Manufacturing Technology}, volume = {98}, journal = {The International Journal of Advanced Manufacturing Technology}, number = {5-8}, publisher = {Springer}, address = {London}, issn = {0268-3768}, doi = {10.1007/s00170-018-2040-8}, pages = {1409 -- 1431}, year = {2018}, abstract = {The rail business is challenged by long product life cycles and a broad spectrum of assembly groups and single parts. When spare part obsolescence occurs, quick solutions are needed. A reproduction of obsolete parts is often connected to long waiting times and minimum lot quantities that need to be purchased and stored. Spare part storage is therefore challenged by growing stocks, bound capital and issues of part ageing. A possible solution could be a virtual storage of spare parts which will be 3D printed through additive manufacturing technologies in case of sudden demand. As mechanical properties of additive manufactured parts are neither guaranteed by machine manufacturers nor by service providers, the utilization of this relatively young technology is impeded and research is required to address these issues. This paper presents an examination of mechanical properties of specimens manufactured from stainless steel through the selective laser melting (SLM) process. The specimens were produced in multiple batches. This paper interrogates the question if the test results follow a normal distribution pattern and if mechanical property predictions can be made. The results will be put opposite existing threshold values provided as the industrial standard. Furthermore, probability predictions will be made in order to examine the potential of the SLM process to maintain state-of-the-art mechanical property requirements.}, language = {en} } @inproceedings{ThurnGebhardt2018, author = {Thurn, Laura and Gebhardt, Andreas}, title = {Strategy of Education on Materials for Students}, series = {Conference Proceedings: „New Perspectives in Science Education"}, booktitle = {Conference Proceedings: „New Perspectives in Science Education"}, address = {Florence, Italy}, isbn = {978-88-6292-976-9}, pages = {156 -- 161}, year = {2018}, language = {en} } @article{BucurLazarescuPopetal.2019, author = {Bucur, Alexandru and Lazarescu, Lucian and Pop, Grigore Marian and Achimas, Gheorghe and Gebhardt, Andreas}, title = {Tribological performance of biodegradable lubricants under different surface roughness of tools}, series = {Academic Journal of Manufacturing Engineering}, volume = {17}, journal = {Academic Journal of Manufacturing Engineering}, number = {1}, issn = {1583-7904}, pages = {172 -- 178}, year = {2019}, language = {en} } @book{Gebhardt2011, author = {Gebhardt, Andreas}, title = {Understanding Additive Manufacturing : Rapid Prototyping - Rapid Tooling - Rapid Manufacturing}, publisher = {Hanser}, address = {M{\"u}nchen}, isbn = {978-3-446-42552-1}, pages = {VIII, 164 S. : farb. Ill.}, year = {2011}, language = {en} }