@incollection{HelmigBoonzaaijer2009, author = {Helmig, Ilka and Boonzaaijer, Karel}, title = {Growing 48 hours : design experiment in an aircraft hangar ...}, series = {Papercraft [1] : design and art with paper}, booktitle = {Papercraft [1] : design and art with paper}, publisher = {Gestalten Verlag}, address = {Berlin}, isbn = {978-3-89955-251-5}, pages = {224}, year = {2009}, subject = {Papierkunst}, language = {en} } @incollection{DuongSeifarthTemizArtmannetal.2018, author = {Duong, Minh Tuan and Seifarth, Volker and Temiz Artmann, Ayseg{\"u}l and Artmann, Gerhard and Staat, Manfred}, title = {Growth Modelling Promoting Mechanical Stimulation of Smooth Muscle Cells of Porcine Tubular Organs in a Fibrin-PVDF Scaffold}, series = {Biological, Physical and Technical Basics of Cell Engineering}, booktitle = {Biological, Physical and Technical Basics of Cell Engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7904-7}, doi = {10.1007/978-981-10-7904-7_9}, pages = {209 -- 232}, year = {2018}, abstract = {Reconstructive surgery and tissue replacements like ureters or bladders reconstruction have been recently studied, taking into account growth and remodelling of cells since living cells are capable of growing, adapting, remodelling or degrading and restoring in order to deform and respond to stimuli. Hence, shapes of ureters or bladders and their microstructure change during growth and these changes strongly depend on external stimuli such as training. We present the mechanical stimulation of smooth muscle cells in a tubular fibrin-PVDFA scaffold and the modelling of the growth of tissue by stimuli. To this end, mechanotransduction was performed with a kyphoplasty balloon catheter that was guided through the lumen of the tubular structure. The bursting pressure was examined to compare the stability of the incubated tissue constructs. The results showed the significant changes on tissues with training by increasing the burst pressure as a characteristic mechanical property and the smooth muscle cells were more oriented with uniformly higher density. Besides, the computational growth models also exhibited the accurate tendencies of growth of the cells under different external stimuli. Such models may lead to design standards for the better layered tissue structure in reconstructing of tubular organs characterized as composite materials such as intestines, ureters and arteries.}, language = {en} } @incollection{Tippkoetter2016, author = {Tippk{\"o}tter, Nils}, title = {Grundlagen der bio-chemischen Umwandlung}, series = {Energie aus Biomasse : Grundlagen, Techniken und Verfahren}, booktitle = {Energie aus Biomasse : Grundlagen, Techniken und Verfahren}, editor = {Kaltschmidt, Martin}, edition = {3., aktualisierte, erweiterte Auflage}, publisher = {Springer Vieweg}, address = {Berlin ; Heidelberg}, isbn = {978-3-662-47437-2 (Print)}, doi = {10.1007/978-3-662-47438-9}, pages = {1447 -- 1500}, year = {2016}, language = {de} } @incollection{MartinMartin2016, author = {Martin, Joachim and Martin, Angelika}, title = {Gr{\"o}ßen, Formeln, Bemessung}, series = {Zahlentafeln f{\"u}r den Baubetrieb}, booktitle = {Zahlentafeln f{\"u}r den Baubetrieb}, edition = {9., {\"u}berarb. und aktual. Aufl.}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-02838-1 (Online)}, doi = {10.1007/978-3-658-02838-1_1}, pages = {1 -- 61}, year = {2016}, abstract = {Das Kapitel 1 vermittelt eine {\"U}bersicht f{\"u}r den schnellen Gebrauch von Gr{\"o}ßen, Einheiten und Zeichen. Es folgt die Darstellung wichtiger Grundlagen der Mathematik, Lastannahmen und einfacher statischer Systeme. Schließlich werden Hinweise zu charakteristischen Festigkeiten und Tragf{\"a}higkeitsnachweisen f{\"u}r Berechnungen im Mauerwerk, Holz- und Stahlbau sowie Stahlbetonbau gegeben. F{\"u}r eine weitere Vertiefung des Themas empfiehlt sich der Wendehorst Bautechnische Zahlentafel}, language = {de} } @incollection{DigelMansurovBiisenbaevetal.2012, author = {Digel, Ilya and Mansurov, Zulkhair and Biisenbaev, Makhmut and Savitskaya, Irina and Kistaubaeva, Aida and Akimbekov, Nuraly and Zhubanova, Azhar}, title = {Heterogeneous Composites on the Basis of Microbial Cells and Nanostructured Carbonized Sorbents}, series = {Composites and Their Applications}, booktitle = {Composites and Their Applications}, editor = {Hu, Ning}, publisher = {Intech}, address = {London}, isbn = {978-953-51-0706-4}, doi = {10.5772/47796}, pages = {249 -- 272}, year = {2012}, abstract = {The fact that microorganisms prefer to grow on liquid/solid phase surfaces rather than in the surrounding aqueous phase was noticed long time ago [1]. Virtually any surface - animal, mineral, or vegetable - is a subject for microbial colonization and subsequent biofilm formation. It would be adequate to name just a few notorious examples on microbial colonization of contact lenses, ship hulls, petroleum pipelines, rocks in streams and all kinds of biomedical implants. The propensity of microorganisms to become surface-bound is so profound and ubiquitous that it vindicates the advantages for attached forms over their free-ranging counterparts [2]. Indeed, from ecological and evolutionary standpoints, for many microorganisms the surface-bound state means dwelling in nutritionally favorable, non-hostile environments [3]. Therefore, in most of natural and artificial ecosystems surface-associated microorganisms vastly outnumber organisms in suspension and often organize into complex communities with features that differ dramatically from those of free cells [4].}, language = {en} } @incollection{KlockeKatz2017, author = {Klocke, Martina and Katz, Christiane}, title = {Heterogenit{\"a}t von MINT-Studierenden als Herausforderung}, series = {Tagungsband zum 3. Symposium zur Hochschullehre in den MINT-F{\"a}chern}, booktitle = {Tagungsband zum 3. Symposium zur Hochschullehre in den MINT-F{\"a}chern}, publisher = {Technische Hochschule N{\"u}rnberg Georg Simon Ohm}, address = {N{\"u}rnberg}, pages = {31 -- 36}, year = {2017}, language = {de} } @incollection{HoffschmidtAlexopoulosGoettscheetal.2012, author = {Hoffschmidt, Bernhard and Alexopoulos, Spiros and G{\"o}ttsche, Joachim and Sauerborn, Markus}, title = {High concentration solar collectors}, series = {Comprehensive renewable energy / ed. Ali Sayigh. Vol. 3: Solar thermal systems: components and applications}, volume = {3}, booktitle = {Comprehensive renewable energy / ed. Ali Sayigh. Vol. 3: Solar thermal systems: components and applications}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-08-087873-7}, doi = {10.1016/B978-0-08-087872-0.00306-1}, pages = {165 -- 209}, year = {2012}, abstract = {Solar thermal concentrated power is an emerging technology that provides clean electricity for the growing energy market. To the solar thermal concentrated power plant systems belong the parabolic trough, the Fresnel collector, the solar dish, and the central receiver system. For high-concentration solar collector systems, optical and thermal analysis is essential. There exist a number of measurement techniques and systems for the optical and thermal characterization of the efficiency of solar thermal concentrated systems. For each system, structure, components, and specific characteristics types are described. The chapter presents additionally an outline for the calculation of system performance and operation and maintenance topics. One main focus is set to the models of components and their construction details as well as different types on the market. In the later part of this chapter, different criteria for the choice of technology are analyzed in detail.}, language = {en} } @incollection{HoffschmidtAlexopoulosGoettscheetal.2022, author = {Hoffschmidt, Bernhard and Alexopoulos, Spiros and G{\"o}ttsche, Joachim and Sauerborn, Markus and Kaufhold, O.}, title = {High Concentration Solar Collectors}, series = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, booktitle = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-12-819734-9}, doi = {10.1016/B978-0-12-819727-1.00058-3}, pages = {198 -- 245}, year = {2022}, abstract = {Solar thermal concentrated power is an emerging technology that provides clean electricity for the growing energy market. To the solar thermal concentrated power plant systems belong the parabolic trough, the Fresnel collector, the solar dish, and the central receiver system. For high-concentration solar collector systems, optical and thermal analysis is essential. There exist a number of measurement techniques and systems for the optical and thermal characterization of the efficiency of solar thermal concentrated systems. For each system, structure, components, and specific characteristics types are described. The chapter presents additionally an outline for the calculation of system performance and operation and maintenance topics. One main focus is set to the models of components and their construction details as well as different types on the market. In the later part of this article, different criteria for the choice of technology are analyzed in detail.}, language = {en} } @incollection{Peterson2021, author = {Peterson, Leif Arne}, title = {Holzbau}, series = {Wof{\"u}r braucht man das eigentlich? Ein Handbuch f{\"u}r Mathematiklehrkr{\"a}fte der Sekundarstufe I und II}, booktitle = {Wof{\"u}r braucht man das eigentlich? Ein Handbuch f{\"u}r Mathematiklehrkr{\"a}fte der Sekundarstufe I und II}, editor = {Schl{\"u}ter, Dominik}, publisher = {BoD}, address = {Norderstedt}, isbn = {978-3-7543-2606-0}, pages = {21 -- 23}, year = {2021}, language = {de} } @incollection{GrossHeckenRenz1999, author = {Groß, Rolf Fritz and Hecken, M. and Renz, Ulrich}, title = {Hot gas filtration with ceramic filter candles: experimental and numerical investigations on fluid flow during element cleaning}, series = {High temperature gas cleaning. Vol. 2}, booktitle = {High temperature gas cleaning. Vol. 2}, editor = {Dittler, A. and Hemmer, G. and Kasper, G.}, publisher = {KIT Institut f{\"u}r Mechanische Verfahrenstechnik und Mechanik}, address = {Karlsruhe}, isbn = {3-9805220-1-6}, pages = {862 -- 873}, year = {1999}, abstract = {Ceramic hot gas filters are widely used in combined cycles based on pressurised fluidised beds. They fulfil most of the demands with respect to cleaning efficiency and long time durability, but their operation regarding the consumption of pulse gas and energy still has to be optimised. Experimental investigations were carried out to measure the flow field, the pressure and the gas temperature inside the filter candle during pulse jet cleaning. These results are compared with the results of a numerical procedure based on a solution of the two - dimensional conservation equations for momentum and energy. The observed difficulties handling different flow regimes like highly turbulent flow as well as Darcy flow simultaneously are discussed.}, language = {en} }