@article{BechtSchollmayerMonakhovaetal.2021, author = {Becht, Alexander and Schollmayer, Curd and Monakhova, Yulia and Holzgrabe, Ulrike}, title = {Tracing the origin of paracetamol tablets by near-infrared, mid-infrared, and nuclear magnetic resonance spectroscopy using principal component analysis and linear discriminant analysis}, series = {Analytical and Bioanalytical Chemistry}, volume = {413}, journal = {Analytical and Bioanalytical Chemistry}, publisher = {Springer Nature}, issn = {1618-2650}, doi = {10.1007/s00216-021-03249-z}, pages = {3107 -- 3118}, year = {2021}, abstract = {Most drugs are no longer produced in their own countries by the pharmaceutical companies, but by contract manufacturers or at manufacturing sites in countries that can produce more cheaply. This not only makes it difficult to trace them back but also leaves room for criminal organizations to fake them unnoticed. For these reasons, it is becoming increasingly difficult to determine the exact origin of drugs. The goal of this work was to investigate how exactly this is possible by using different spectroscopic methods like nuclear magnetic resonance and near- and mid-infrared spectroscopy in combination with multivariate data analysis. As an example, 56 out of 64 different paracetamol preparations, collected from 19 countries around the world, were chosen to investigate whether it is possible to determine the pharmaceutical company, manufacturing site, or country of origin. By means of suitable pre-processing of the spectra and the different information contained in each method, principal component analysis was able to evaluate manufacturing relationships between individual companies and to differentiate between production sites or formulations. Linear discriminant analysis showed different results depending on the spectral method and purpose. For all spectroscopic methods, it was found that the classification of the preparations to their manufacturer achieves better results than the classification to their pharmaceutical company. The best results were obtained with nuclear magnetic resonance and near-infrared data, with 94.6\%/99.6\% and 98.7/100\% of the spectra of the preparations correctly assigned to their pharmaceutical company or manufacturer.}, language = {en} } @article{BodeBartschBoulikasetal.1998, author = {Bode, J. and Bartsch, J. and Boulikas, T. and Iber, M. and Mielke, C. and Sch{\"u}beler, D. and Seibler, Jost and Benham, C.}, title = {Transcription-promoting genomic sites in mammalia: their elucidation and architectural principles}, series = {Gene therapy \& molecular biology}, volume = {1}, journal = {Gene therapy \& molecular biology}, number = {1}, issn = {1529-9120}, pages = {1 -- 29}, year = {1998}, language = {en} } @article{HalbachScheer2000, author = {Halbach, Thorsten and Scheer, Nico}, title = {Transcriptional activation by the PHD finger is inhibited through an adjacent leucine zipper that binds 14-3-3 proteins}, series = {Nucleic Acids Research}, volume = {28}, journal = {Nucleic Acids Research}, number = {18}, issn = {1362-4962}, doi = {10.1093/nar/28.18.3542}, pages = {3542 -- 3550}, year = {2000}, language = {en} } @article{BongaertsZoschkeWeidneretal.1995, author = {Bongaerts, Johannes and Zoschke, Sascha and Weidner, Uwe and Linden, Gottfried}, title = {Transcriptional regulation of the proton translocating NADH}, series = {Molecular microbiology}, volume = {Vol. 16}, journal = {Molecular microbiology}, number = {Iss. 3}, issn = {1365-2958 (E-Journal); 0950-382x (Print)}, pages = {521 -- 534}, year = {1995}, language = {en} } @incollection{SeiblerSchwenk2010, author = {Seibler, Jost and Schwenk, Frieder}, title = {Transgenic RNAi Applications in the Mouse}, series = {Methods in Enzymology : Guide to Techniques in Mouse Development, Part B: Mouse Molecular Genetics. 2nd Edition}, booktitle = {Methods in Enzymology : Guide to Techniques in Mouse Development, Part B: Mouse Molecular Genetics. 2nd Edition}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-12-384880-2}, pages = {367 -- 386}, year = {2010}, language = {en} } @article{BarbazanHagenbachPaulssenetal.2010, author = {Barbaz{\´a}n, Paula and Hagenbach, Adelheid and Paulßen, Elisabeth and Abram, Ulrich and Carballo, Rosa and Rodriguez-Hermida, Sabina and V{\´a}zquez-L{\´o}pez, Ezequiel M.}, title = {Tricarbonyl Rhenium(I) and Technetium(I) Complexes with Hydrazones Derived from 4,5-Diazafluoren-9-one and 1,10-Phenanthroline-5,6-dione}, series = {European Journal of Inorganic Chemistry}, journal = {European Journal of Inorganic Chemistry}, number = {29}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1099-0682}, doi = {10.1002/ejic.201000522}, pages = {4622 -- 4630}, year = {2010}, abstract = {Tricarbonylrhenium(I) and -technetium(I) halide (halide = Cl and Br) complexes of ligands derived from 4,5-diazafluoren-9-one (df) and 1,10-phenanthroline-5,6-dione (phen) derivatives of benzoic and 2-hydroxybenzoic acid hydrazides have been prepared. The complexes have been characterized by elemental analysis, MS, IR, 1H NMR and absorption and emission UV/Vis spectroscopic methods. The metal centres (ReI and TcI) are coordinated through the nitrogen imine atoms and establish five-membered chelate rings, whereas the hydrazone groups stand uncoordinated. The 1H NMR spectra suggest the same behaviour in solution on the basis of only marginal variations in the chemical shifts of the hydrazine protons.}, language = {en} } @article{PaulssenNgyugenKahlckeetal.2012, author = {Paulßen, Elisabeth and Ngyugen, Hung Huy and Kahlcke, Nils and Deflon, Victor M. and Abram, Ulrich}, title = {Tricarbonyltechnetium(I) and -rhenium(I) complexes with N′-thiocarbamoylpicolylbenzamidines}, series = {Polyhedron}, volume = {40}, journal = {Polyhedron}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0277-5387}, doi = {10.1016/j.poly.2012.04.008}, pages = {153 -- 158}, year = {2012}, abstract = {N,N-Dialkylamino(thiocarbonyl)-N′-picolylbenzamidines react with (NEt4)2[M(CO)3X3] (M = Re, X = Br; M = Tc, X = Cl) under formation of neutral [M(CO)3L] complexes in high yields. The monoanionic NNS ligands bind in a facial coordination mode and can readily be modified at the (CS)NR1R2 moiety. The complexes [99Tc(CO)3(LPyMor)] and [Re(CO)3(L)] (L = LPyMor, LPyEt) were characterized by X-ray diffraction. Reactions of [99mTc(CO)3(H2O)3]+ with the N′-thiocarbamoylpicolylbenzamidines give the corresponding 99mTc complexes. The ester group in HLPyCOOEt allows linkage between biomolecules and the metal core.}, language = {en} } @article{SelmerHermannJessenetal.2005, author = {Selmer, Thorsten and Hermann, Gloria and Jessen, Holly and Gokarn, Ravi R.}, title = {Two beta-alanyl-CoA:ammonia lyases in Clostridium propionicum / Herrmann , G. ; Selmer, T. ; Jessen, HJ. ; Gokarn, RR. ; Selifonova, O. ; Gort , SJ. ; , Buckel, W.}, series = {The FEBS Journal. 272 (2005), H. 3}, journal = {The FEBS Journal. 272 (2005), H. 3}, isbn = {1742-464X}, pages = {813 -- 821}, year = {2005}, language = {en} } @article{SchererJacobiCastilloetal.2009, author = {Scherer, Ulrich W. and Jacobi, M. and Castillo, J. and Foerstel, D. H.}, title = {Ultra-low-level measurements of 3H and 14C in wines and champagne / Scherer, U. W. ; Jacobi, M. ; Castillo, J. ; Foerstel, D. H.}, series = {Radiation effects and defects in solids. 164 (2009), H. 5-6}, journal = {Radiation effects and defects in solids. 164 (2009), H. 5-6}, isbn = {1042-0150}, pages = {382 -- 385}, year = {2009}, language = {en} } @incollection{SrivastavaKnolleHoyleretal.2015, author = {Srivastava, Alok and Knolle, Friedhart and Hoyler, Friedrich and Scherer, Ulrich W. and Schnug, Ewald}, title = {Uranium Toxicity in the State of Punjab in North-Western India}, series = {Management of Natural Resources in a Changing Environment}, booktitle = {Management of Natural Resources in a Changing Environment}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-12559-6}, doi = {10.1007/978-3-319-12559-6_21}, pages = {271 -- 275}, year = {2015}, abstract = {Lately there has been an increasing concern about uranium toxicity in some districts of Punjab State located in the North Western part of India after the publication of a report (Blaurock-Busch et al. 2010) which showed that the concentration of uranium in hair and urine of children suffering from physical deformities, neurological and mental disorder from Malwa region (Fig. 1) of Punjab State was manifold higher than the reference ranges. A train which connects the affected region with the nearby city of Bikaner which has a Cancer Hospital has been nicknamed as Cancer Express due to the frenzy generated on account of uranium related toxicity.}, language = {en} }