@article{StaatVu2012, author = {Staat, Manfred and Vu, Duc Khoi}, title = {Limit analysis of flaws in pressurized pipes and cylindrical vessels Part II: Circumferential defects}, series = {Engineering Fracture Mechanics ; 97(2013), H. 1}, volume = {97}, journal = {Engineering Fracture Mechanics ; 97(2013), H. 1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0013-7944}, doi = {10.1016/j.engfracmech.2012.05.017}, pages = {314 -- 333}, year = {2012}, abstract = {Upper and lower bound theorems of limit analyses have been presented in part I of the paper. Part II starts with the finite element discretization of these theorems and demonstrates how both can be combined in a primal-dual optimization problem. This recently proposed numerical method is used to guide the development of a new class of closed-form limit loads for circumferential defects, which show that only large defects contribute to plastic collapse with a rapid loss of strength with increasing crack sizes. The formulae are compared with primal-dual FEM limit analyses and with burst tests. Even closer predictions are obtained with iterative limit load solutions for the von Mises yield function and for the Tresca yield function. Pressure loading of the faces of interior cracks in thick pipes reduces the collapse load of circumferential defects more than for axial flaws. Axial defects have been treated in part I of the paper.}, language = {en} } @article{NiemuellerFerreinEckeletal.2011, author = {Niem{\"u}ller, Tim and Ferrein, Alexander and Eckel, Gerhard and Pirro, David and Podbregar, Patrick and Kellner, Tobias and Rath, Christoph and Steinbauer, Gerald}, title = {Providing Ground-truth Data for the Nao Robot Platform}, series = {RoboCup 2010: Robot Soccer World Cup XIV}, journal = {RoboCup 2010: Robot Soccer World Cup XIV}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-642-20217-9}, pages = {133 -- 144}, year = {2011}, language = {en} } @article{GoettscheHove1999, author = {G{\"o}ttsche, Joachim and Hove, T.}, title = {Mapping global, diffuse and beam solar radiation over Zimbabwe / T. Hove ; J. G{\"o}ttsche}, series = {Renewable energy. 18 (1999), H. 4}, journal = {Renewable energy. 18 (1999), H. 4}, isbn = {1879-0682}, pages = {535 -- 556}, year = {1999}, language = {en} } @article{StulpeRuch1998, author = {Stulpe, Werner and Ruch, Ernst}, title = {Proof of the Mixing Theorem for Statistical Systems in Classical Physics. Ruch, Ernst; Stulpe, Werner}, series = {Acta Applicandae Mathematicae. 53 (1998), H. 3}, journal = {Acta Applicandae Mathematicae. 53 (1998), H. 3}, isbn = {1572-9036}, pages = {329 -- 352}, year = {1998}, language = {en} } @article{Goettsche1994, author = {G{\"o}ttsche, Joachim}, title = {Eldorado summer schools}, series = {Progress in solar energy education. 3 (1994)}, journal = {Progress in solar energy education. 3 (1994)}, isbn = {1018-5607}, pages = {31 -- 33}, year = {1994}, language = {en} } @inproceedings{AjonaHerrmannSperdutoetal.1996, author = {Ajona, J. I. and Herrmann, Ulf and Sperduto, F. and Farinha-Mendes, J.}, title = {Main Achievements within ARDISS (Advanced Receiver for Direct Solar Steam Production in Parabolic Trough Solar Power Plants) Project}, series = {Components, tools, facilities and measurement techniques. - (Solar thermal concentrating technologies : proceedings of the 8th international symposium, October, 6 - 11, 1996, K{\"o}ln, Germany ; Vol. 2)}, booktitle = {Components, tools, facilities and measurement techniques. - (Solar thermal concentrating technologies : proceedings of the 8th international symposium, October, 6 - 11, 1996, K{\"o}ln, Germany ; Vol. 2)}, editor = {Becker, Manfred}, publisher = {M{\"u}ller}, address = {Heidelberg}, isbn = {3-7880-7616-X}, pages = {733 -- 754}, year = {1996}, language = {en} } @article{PoghossianJablonskiMolinnusetal.2020, author = {Poghossian, Arshak and Jablonski, Melanie and Molinnus, Denise and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {Field-Effect Sensors for Virus Detection: From Ebola to SARS-CoV-2 and Plant Viral Enhancers}, series = {Frontiers in Plant Science}, volume = {11}, journal = {Frontiers in Plant Science}, number = {Article 598103}, publisher = {Frontiers}, address = {Lausanne}, doi = {10.3389/fpls.2020.598103}, pages = {1 -- 14}, year = {2020}, abstract = {Coronavirus disease 2019 (COVID-19) is a novel human infectious disease provoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, no specific vaccines or drugs against COVID-19 are available. Therefore, early diagnosis and treatment are essential in order to slow the virus spread and to contain the disease outbreak. Hence, new diagnostic tests and devices for virus detection in clinical samples that are faster, more accurate and reliable, easier and cost-efficient than existing ones are needed. Due to the small sizes, fast response time, label-free operation without the need for expensive and time-consuming labeling steps, the possibility of real-time and multiplexed measurements, robustness and portability (point-of-care and on-site testing), biosensors based on semiconductor field-effect devices (FEDs) are one of the most attractive platforms for an electrical detection of charged biomolecules and bioparticles by their intrinsic charge. In this review, recent advances and key developments in the field of label-free detection of viruses (including plant viruses) with various types of FEDs are presented. In recent years, however, certain plant viruses have also attracted additional interest for biosensor layouts: Their repetitive protein subunits arranged at nanometric spacing can be employed for coupling functional molecules. If used as adapters on sensor chip surfaces, they allow an efficient immobilization of analyte-specific recognition and detector elements such as antibodies and enzymes at highest surface densities. The display on plant viral bionanoparticles may also lead to long-time stabilization of sensor molecules upon repeated uses and has the potential to increase sensor performance substantially, compared to conventional layouts. This has been demonstrated in different proof-of-concept biosensor devices. Therefore, richly available plant viral particles, non-pathogenic for animals or humans, might gain novel importance if applied in receptor layers of FEDs. These perspectives are explained and discussed with regard to future detection strategies for COVID-19 and related viral diseases.}, language = {en} } @article{BialonskiHorstmannLehnertz2010, author = {Bialonski, Stephan and Horstmann, Marie-Therese and Lehnertz, Klaus}, title = {From brain to earth and climate systems: Small-world interaction networks or not?}, series = {Chaos: An Interdisciplinary Journal of Nonlinear Science}, volume = {20}, journal = {Chaos: An Interdisciplinary Journal of Nonlinear Science}, number = {1}, publisher = {AIP Publishing}, address = {Melville, NY}, issn = {1089-7682}, doi = {10.1063/1.3360561}, pages = {013134}, year = {2010}, abstract = {We consider recent reports on small-world topologies of interaction networks derived from the dynamics of spatially extended systems that are investigated in diverse scientific fields such as neurosciences, geophysics, or meteorology. With numerical simulations that mimic typical experimental situations, we have identified an important constraint when characterizing such networks: indications of a small-world topology can be expected solely due to the spatial sampling of the system along with the commonly used time series analysis based approaches to network characterization.}, language = {en} } @article{Weigand2000, author = {Weigand, Christoph}, title = {Economically Optimal Adaptive Inspection Policies}, series = {Economic Quality Control. 15 (2000), H. 1/2}, journal = {Economic Quality Control. 15 (2000), H. 1/2}, isbn = {0940-5151}, pages = {55 -- 77}, year = {2000}, language = {en} } @incollection{AlhwarinFerreinScholl2014, author = {Alhwarin, Faraj and Ferrein, Alexander and Scholl, Ingrid}, title = {IR stereo kinect: improving depth images by combining structured light with IR stereo}, series = {PRICAI 2014: Trends in artificial intelligence : 13th Pacific Rim International Conference on Artificial Intelligence : Gold Coast, QLD, Australia, December 1-5, 2014 : proceedings. (Lecture notes in computer science ; vol. 8862)}, booktitle = {PRICAI 2014: Trends in artificial intelligence : 13th Pacific Rim International Conference on Artificial Intelligence : Gold Coast, QLD, Australia, December 1-5, 2014 : proceedings. (Lecture notes in computer science ; vol. 8862)}, publisher = {Springer}, address = {M{\"u}nchen}, isbn = {978-3-319-13559-5 (Print) ; 978-3-319-13560-1 (E-Book)}, doi = {10.1007/978-3-319-13560-1_33}, pages = {409 -- 421}, year = {2014}, abstract = {RGB-D sensors such as the Microsoft Kinect or the Asus Xtion are inexpensive 3D sensors. A depth image is computed by calculating the distortion of a known infrared light (IR) pattern which is projected into the scene. While these sensors are great devices they have some limitations. The distance they can measure is limited and they suffer from reflection problems on transparent, shiny, or very matte and absorbing objects. If more than one RGB-D camera is used the IR patterns interfere with each other. This results in a massive loss of depth information. In this paper, we present a simple and powerful method to overcome these problems. We propose a stereo RGB-D camera system which uses the pros of RGB-D cameras and combine them with the pros of stereo camera systems. The idea is to utilize the IR images of each two sensors as a stereo pair to generate a depth map. The IR patterns emitted by IR projectors are exploited here to enhance the dense stereo matching even if the observed objects or surfaces are texture-less or transparent. The resulting disparity map is then fused with the depth map offered by the RGB-D sensor to fill the regions and the holes that appear because of interference, or due to transparent or reflective objects. Our results show that the density of depth information is increased especially for transparent, shiny or matte objects.}, language = {en} }