@article{HasegawaKapelyukhTaharaetal.2011, author = {Hasegawa, Maki and Kapelyukh, Yury and Tahara, Harunobu and Seibler, Jost and Rode, Anja and Krueger, Sylvia and Lee, Dongtao N. and Wolf, C. Roland and Scheer, Nico}, title = {Quantitative prediction of human pregnane X receptor and cytochrome P450 3A4 mediated drug-drug interaction in a novel multiple humanized mouse line}, series = {Molecular Pharmacology}, volume = {80}, journal = {Molecular Pharmacology}, number = {33}, publisher = {ASPET}, address = {Bethesda, Md.}, issn = {1521-0111}, doi = {10.1124/mol.111.071845}, pages = {518 -- 528}, year = {2011}, language = {en} } @article{ScheerSnaithWolfetal.2013, author = {Scheer, Nico and Snaith, Mike and Wolf, C. Roland and Seibler, Jost}, title = {Generation and utility of genetically humanized mouse models}, series = {Drug Discovery Today}, volume = {Vol 18}, journal = {Drug Discovery Today}, number = {23-24}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1359-6446}, doi = {10.1016/j.drudis.2013.07.007}, pages = {1200 -- 1211}, year = {2013}, language = {en} } @inproceedings{KazukiKobayashiHirabayashietal.2019, author = {Kazuki, Yasuhiro and Kobayashi, Kaoru and Hirabayashi, Masumi and Abe, Satoshi and Kajitani, Naoyo and Kazuki, Kanoko and Takehara, Shoko and Takiguchi, Masato and Satoh, Daisuke and Kuze, Jiro and Sakuma, Tetsushi and Kaneko, Takehito and Mashimo, Tomoji and Osamura, Minori and Hashimoto, Mari and Wakatsuki, Riko and Hirashima, Rika and Fujiwara, Ryoichi and Deguchi, Tsuneo and Kurihara, Atsushi and Tsukazaki, Yasuko and Senda, Naoto and Yamamoto, Takashi and Scheer, Nico and Oshimura, Mitsuo}, title = {Humanized UGT2 and CYP3A transchromosomic rats for improved prediction of human drug metabolism}, series = {PNAS Proceedings of the National Academy of Sciences of the United States of America}, volume = {116}, booktitle = {PNAS Proceedings of the National Academy of Sciences of the United States of America}, number = {8}, issn = {1091-6490}, doi = {10.1073/pnas.1808255116}, pages = {3072 -- 3081}, year = {2019}, language = {en} } @article{WilsonDickieSchreiteretal.2018, author = {Wilson, C. E. and Dickie, A. P. and Schreiter, K. and Wehr, R. and Wilson, E. M. and Bial, J. and Scheer, Nico and Wilson, I. D. and Riley, R. J.}, title = {The pharmacokinetics and metabolism of diclofenac in chimeric humanized and murinized FRG mice}, series = {Archives of Toxicology}, volume = {92}, journal = {Archives of Toxicology}, number = {6}, publisher = {Springer}, issn = {1432-0738}, doi = {10.1007/s00204-018-2212-1}, pages = {1953 -- 1967}, year = {2018}, abstract = {The pharmacokinetics of diclofenac were investigated following single oral doses of 10 mg/kg to chimeric liver humanized and murinized FRG and C57BL/6 mice. In addition, the metabolism and excretion were investigated in chimeric liver humanized and murinized FRG mice. Diclofenac reached maximum blood concentrations of 2.43 ± 0.9 µg/mL (n = 3) at 0.25 h post-dose with an AUCinf of 3.67 µg h/mL and an effective half-life of 0.86 h (n = 2). In the murinized animals, maximum blood concentrations were determined as 3.86 ± 2.31 µg/mL at 0.25 h post-dose with an AUCinf of 4.94 ± 2.93 µg h/mL and a half-life of 0.52 ± 0.03 h (n = 3). In C57BL/6J mice, mean peak blood concentrations of 2.31 ± 0.53 µg/mL were seen 0.25 h post-dose with a mean AUCinf of 2.10 ± 0.49 µg h/mL and a half-life of 0.51 ± 0.49 h (n = 3). Analysis of blood indicated only trace quantities of drug-related material in chimeric humanized and murinized FRG mice. Metabolic profiling of urine, bile and faecal extracts revealed a complex pattern of metabolites for both humanized and murinized animals with, in addition to unchanged parent drug, a variety of hydroxylated and conjugated metabolites detected. The profiles in humanized mice were different to those of both murinized and wild-type animals, e.g., a higher proportion of the dose was detected in the form of acyl glucuronide metabolites and much reduced amounts as taurine conjugates. Comparison of the metabolic profiles obtained from the present study with previously published data from C57BL/6J mice and humans revealed a greater, though not complete, match between chimeric humanized mice and humans, such that the liver humanized FRG model may represent a model for assessing the biotransformation of such compounds in humans.}, language = {en} } @article{WilsonWilsonScheeretal.2017, author = {Wilson, Ian D. and Wilson, Claire E. and Scheer, Nico and Dickie, A.P. and Schreiter, K. and Wilson, E. M. and Riley, R. J. and Wehr, R. and Bial, J.}, title = {The Pharmacokinetics and Metabolism of Lumiracoxib in Chimeric Humanized and Murinized FRG Mice}, series = {Biochemical pharmacology}, volume = {Volume 135}, journal = {Biochemical pharmacology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-2968}, doi = {10.1016/j.bcp.2017.03.015}, pages = {139 -- 150}, year = {2017}, language = {en} } @article{ZhangHeimbachScheeretal.2016, author = {Zhang, Jin and Heimbach, Tycho and Scheer, Nico and Barve, Avantika and Li, Wenkui and Lin, Wen and He, Handan}, title = {Clinical Exposure Boost Predictions by Integrating Cytochrome P450 3A4-Humanized Mouse Studies With PBPK Modeling}, series = {Journal of Pharmaceutical Sciences}, volume = {Volume 105}, journal = {Journal of Pharmaceutical Sciences}, number = {Issue 4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-3549}, doi = {doi.org/10.1016/j.xphs.2016.01.021}, pages = {1398 -- 1404}, year = {2016}, abstract = {NVS123 is a poorly water-soluble protease 56 inhibitor in clinical development. Data from in vitro hepatocyte studies suggested that NVS123 is mainly metabolized by CYP3A4. As a consequence of limited solubility, NVS123 therapeutic plasma exposures could not be achieved even with high doses and optimized formulations. One approach to overcome NVS123 developability issues was to increase plasma exposure by coadministrating it with an inhibitor of CYP3A4 such as ritonavir. A clinical boost effect was predicted by using physiologically based pharmacokinetic (PBPK) modeling. However, initial boost predictions lacked sufficient confidence because a key parameter, fraction of drug metabolized by CYP3A4 (ƒₘCYP3A4), could not be estimated with accuracy on account of disconnects between in vitro and in vivo preclinical data. To accurately estimate ƒₘCYP3A4 in human, an in vivo boost effect study was conducted using CYP3A4-humanized mouse model which showed a 33- to 56-fold exposure boost effect. Using a top-down approach, human ƒₘCYP3A4 for NVS123 was estimated to be very high and included in the human PBPK modeling to support subsequent clinical study design. The combined use of the in vivo boost study in CYP3A4-humanized mouse model mice along with PBPK modeling accurately predicted the clinical outcome and identified a significant NVS123 exposure boost (∼42-fold increase) with ritonavir.}, language = {en} } @article{DallasSalphatiGomezZepedaetal.2016, author = {Dallas, Shannon and Salphati, Laurent and Gomez-Zepeda, David and Wanek, Thomas and Chen, Liangfu and Chu, Xiaoyan and Kunta, Jeevan and Mezler, Mario and Menet, Marie-Claude and Chasseigneaux, Stephanie and Decl{\`e}ves, Xavier and Langer, Oliver and Pierre, Esaie and DiLoreto, Karen and Hoft, Carolin and Laplanche, Loic and Pang, Jodie and Pereira, Tony and Andonian, Clara and Simic, Damir and Rode, Anja and Yabut, Jocelyn and Zhang, Xiaolin and Scheer, Nico}, title = {Generation and Characterization of a Breast Cancer Resistance Protein Humanized Mouse Model}, series = {Molecular Pharmacology}, volume = {89}, journal = {Molecular Pharmacology}, number = {5}, publisher = {ASPET}, address = {Bethesda, Md.}, issn = {1521-0111}, doi = {10.1124/mol.115.102079}, pages = {492 -- 504}, year = {2016}, abstract = {Breast cancer resistance protein (BCRP) is expressed in various tissues, such as the gut, liver, kidney and blood brain barrier (BBB), where it mediates the unidirectional transport of substrates to the apical/luminal side of polarized cells. Thereby BCRP acts as an efflux pump, mediating the elimination or restricting the entry of endogenous compounds or xenobiotics into tissues and it plays important roles in drug disposition, efficacy and safety. Bcrp knockout mice (Bcrp-/-) have been used widely to study the role of this transporter in limiting intestinal absorption and brain penetration of substrate compounds. Here we describe the first generation and characterization of a mouse line humanized for BCRP (hBCRP), in which the mouse coding sequence from the start to stop codon was replaced with the corresponding human genomic region, such that the human transporter is expressed under control of the murine Bcrp promoter. We demonstrate robust human and loss of mouse BCRP/Bcrp mRNA and protein expression in the hBCRP mice and the absence of major compensatory changes in the expression of other genes involved in drug metabolism and disposition. Pharmacokinetic and brain distribution studies with several BCRP probe substrates confirmed the functional activity of the human transporter in these mice. Furthermore, we provide practical examples for the use of hBCRP mice to study drug-drug interactions (DDIs). The hBCRP mouse is a promising model to study the in vivo role of human BCRP in limiting absorption and BBB penetration of substrate compounds and to investigate clinically relevant DDIs involving BCRP.}, language = {en} } @article{ScheerKapelyukhRodeetal.2015, author = {Scheer, Nico and Kapelyukh, Yury and Rode, Anja and Oswald, Stefan and Busch, Diana and Mclaughlin, Lesley A. and Lin, De and Henderson, Colin J. and Wolf, C. Roland}, title = {Defining Human Pathways of Drug Metabolism In Vivo through the Development of a Multiple Humanized Mouse Model}, series = {Drug Metabolism and Disposition}, volume = {43}, journal = {Drug Metabolism and Disposition}, number = {11}, publisher = {ASPET}, address = {Bethesda}, issn = {1521-009x}, doi = {10.1124/dmd.115.065656}, pages = {1679 -- 1690}, year = {2015}, language = {en} } @article{HoughNalwalkDingetal.2015, author = {Hough, Lindsay B. and Nalwalk, Julia W. and Ding, Xinxin and Scheer, Nico}, title = {Opioid Analgesia in P450 Gene Cluster Knockout Mice: A Search for Analgesia-Relevant Isoforms}, series = {Drug Metabolism and Disposition}, volume = {43}, journal = {Drug Metabolism and Disposition}, number = {9}, issn = {1521-009x}, doi = {10.1124/dmd.115.065490}, pages = {1326 -- 1330}, year = {2015}, language = {en} } @article{HendersonMclaughlinScheeretal.2015, author = {Henderson, Colin J. and Mclaughlin, Lesley A. and Scheer, Nico and Stanley, Lesley A. and Wolf, C. Roland}, title = {Cytochrome b5 Is a Major Determinant of Human Cytochrome P450 CYP2D6 and CYP3A4 Activity In Vivo s}, series = {Molecular Pharmacology}, volume = {87}, journal = {Molecular Pharmacology}, number = {4}, publisher = {ASPET}, address = {Bethesda}, issn = {1521-0111}, doi = {10.1124/mol.114.097394}, pages = {733 -- 739}, year = {2015}, language = {en} }