@article{VogtMottaghyRathetal.2014, author = {Vogt, C. and Mottaghy, Darius and Rath, V. and Marquart, G. and Dijkshoorn, L. and Wolf, A. and Clauser, C.}, title = {Vertical variation in heat flow on the Kola Peninsula: palaeoclimate or fluid flow?}, series = {Geophysical Journal International}, volume = {199}, journal = {Geophysical Journal International}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1365-246X}, doi = {10.1093/gji/ggu282}, pages = {829 -- 843}, year = {2014}, abstract = {Following earlier studies, we present forward and inverse simulations of heat and fluid transport of the upper crust using a local 3-D model of the Kola area. We provide best estimates for palaeotemperatures and permeabilities, their errors and their dependencies. Our results allow discriminating between the two mentioned processes to a certain extent, partly resolving the non-uniqueness of the problem. We find clear indications for a significant contribution of advective heat transport, which, in turn, imply only slightly lower ground surface temperatures during the last glacial maximum relative to the present value. These findings are consistent with the general background knowledge of (i) the fracture zones and the corresponding fluid movements in the bedrock and (ii) the glacial history of the Kola area.}, language = {en} } @article{VitusevichFoersterReetzetal.2000, author = {Vitusevich, S. A. and F{\"o}rster, Arnold and Reetz, W. and L{\"u}th, H. and Belyaev, A. E. and Danylyuk, S. V.}, title = {Spectral Responsivity of single-quantum-well photodetectors}, series = {Applied Physics Letters. 77 (2000), H. 1}, journal = {Applied Physics Letters. 77 (2000), H. 1}, isbn = {1077-3118}, pages = {16 -- 18}, year = {2000}, language = {en} } @article{VitusevichFoersterReetzetal.2000, author = {Vitusevich, S. A. and F{\"o}rster, Arnold and Reetz, W. and L{\"u}th, H. and Belyaev, A. E. and Danylyuk, S. V.}, title = {Fine structure of photoresponse spectra in a double-barrier resonant tunnelling diode}, series = {Nanotechnology. 11 (2000), H. 4}, journal = {Nanotechnology. 11 (2000), H. 4}, isbn = {1361-6528}, pages = {305 -- 308}, year = {2000}, language = {en} } @article{VitusevichFoersterLuethetal.2001, author = {Vitusevich, S. A. and F{\"o}rster, Arnold and L{\"u}th, H. and Belyaev, A. E. and Danylyuk, S. V. and Konakova, R. V. and Sheka, D. I.}, title = {Resonant spectroscopy of electric-field-induced superlattices}, series = {Journal of Applied Physics. 90 (2001), H. 6}, journal = {Journal of Applied Physics. 90 (2001), H. 6}, isbn = {1089-7550}, doi = {10.1063/1.1392956}, pages = {2857 -- 2861}, year = {2001}, language = {en} } @article{VitusevichFoersterIndlekoferetal.2000, author = {Vitusevich, S. A. and F{\"o}rster, Arnold and Indlekofer, K.-M. and L{\"u}th, H. and Belyaev, A. E. and Glavin, B. A. and Konakova, R. V.}, title = {Tunneling Through X-Valley-Related Impurity States in GaAs/AlAs Resonant-Tunneling Diodes}, series = {Physical Review . B. 61 (2000), H. 16}, journal = {Physical Review . B. 61 (2000), H. 16}, isbn = {1550-235X}, pages = {10898 -- 10904}, year = {2000}, language = {en} } @article{VerschitzButenweg2014, author = {Verschitz, Daniel and Butenweg, Christoph}, title = {Standsicherheitsnachweis von Beh{\"a}ltern f{\"u}r Kleinkl{\"a}ranlagen}, series = {ACWA aktuell}, journal = {ACWA aktuell}, number = {12 - 9/2014}, publisher = {RWTH Aachen}, address = {Aachen}, pages = {10}, year = {2014}, abstract = {Die PIA GmbH pr{\"u}ft seit fast 8 Jahren die Standsicherheit von Beh{\"a}ltern f{\"u}r Kleinkl{\"a}ranlagen. Diese bestehen in der Regel aus Kunststoff oder Beton und m{\"u}ssen {\"u}ber ihre gesamte Lebensdauer den Beanspruchungen aus Handhabung, Einbau und Betrieb standhalten. Die Standsicherheit kann nach EN 12566 wahlweise durch einen rechnerischen Nachweis oder durch einen praktischen Nachweis wie die Bruchlastpr{\"u}fung oder die Pr{\"u}fung in der Grube erfolgen.}, language = {de} } @article{VelrajSeenirajHafneretal.1997, author = {Velraj, R. and Seeniraj, R. V. and Hafner, B. and Faber, Christian and Schwarzer, Klemens}, title = {Experimental analysis and numerical modelling of inward solidification on a finned vertical tube for a latent heat storage unit}, series = {Solar energy. 60 (1997), H. 5}, journal = {Solar energy. 60 (1997), H. 5}, isbn = {0038-092X}, pages = {281 -- 290}, year = {1997}, language = {en} } @article{VargaDavinsonGloriusetal.2020, author = {Varga, Laszlo and Davinson, Thomas and Glorius, Jan and Jurado, Beatrix and Langer, Christoph and Lederer-Woods, Claudia and Litvinov, Yuri A. and Reifarth, Rene and Slavkovska, Zuzana and St{\"o}hlker, Thomas and Woods, Phil J. and Xing, Yuan Ming}, title = {Towards background-free studies of capture reaction in a heavy-ion storage ring}, series = {Journal of Physics: Conference Series}, volume = {1668}, journal = {Journal of Physics: Conference Series}, number = {Art 012046}, publisher = {IOP}, address = {Bristol}, year = {2020}, abstract = {Stored and cooled, highly-charged ions offer unprecedented capabilities for precision studies in the realm of atomic, nuclear structure and astrophysics[1]. After the successful investigation of the 96Ru(p,7)97Rh reaction cross section in 2009[2], the first measurement of the 124Xe(p,7)125Cs reaction cross section has been performed with decelerated, fully-ionized 124Xe ions in 2016 at the Experimental Storage Ring (ESR) of GSI[3]. Using a Double Sided Silicon Strip Detector, introduced directly into the ultra-high vacuum environment of a storage ring, the 125Cs proton-capture products have been successfully detected. The cross section has been measured at 5 different energies between 5.5AMeV and 8AMeV, on the high energy tail of the Gamow-window for hot, explosive scenarios such as supernovae and X-ray binaries. The elastic scattering on the H2 gas jet target is the major source of background to count the (p,7) events. Monte Carlo simulations show that an additional slit system in the ESR in combination with the energy information of the Si detector will enable background free measurements of the proton-capture products. The corresponding hardware is being prepared and will increase the sensitivity of the method tremendously.}, language = {en} } @article{UngermannsAheCariusetal.1997, author = {Ungermanns, C. and Ahe, M. v. d. and Carius, Reinhard and F{\"o}rster, Arnold}, title = {Optimization of III/V binary growth with RHEED in MOMBE / C. Ungermanns ; M. v. d. Ahe ; R. Carius ; A. F{\"o}rster ...}, series = {Fresenius' Journal of Analytical Chemistry. 358 (1997), H. 1-2}, journal = {Fresenius' Journal of Analytical Chemistry. 358 (1997), H. 1-2}, isbn = {0937-0633}, pages = {101 -- 104}, year = {1997}, language = {en} } @inproceedings{TomićPennaDeJongetal.2020, author = {Tomić, Igor and Penna, Andrea and DeJong, Matthew and Butenweg, Christoph and Correia, Ant{\´o}nio A. and Candeias, Paulo X. and Senaldi, Ilaria and Guerrini, Gabriele and Malomo, Daniele and Beyer, Katrin}, title = {Seismic testing of adjacent interacting masonry structures}, series = {12th International Conference on Structural Analysis of Historical Constructions (SAHC 2020)}, booktitle = {12th International Conference on Structural Analysis of Historical Constructions (SAHC 2020)}, doi = {10.23967/sahc.2021.234}, pages = {1 -- 12}, year = {2020}, abstract = {In many historical centres in Europe, stone masonry buildings are part of building aggregates, which developed when the layout of the city or village was densified. In these aggregates, adjacent buildings share structural walls to support floors and roofs. Meanwhile, the masonry walls of the fa{\c{c}}ades of adjacent buildings are often connected by dry joints since adjacent buildings were constructed at different times. Observations after for example the recent Central Italy earthquakes showed that the dry joints between the building units were often the first elements to be damaged. As a result, the joints opened up leading to pounding between the building units and a complicated interaction at floor and roof beam supports. The analysis of such building aggregates is very challenging and modelling guidelines do not exist. Advances in the development of analysis methods have been impeded by the lack of experimental data on the seismic response of such aggregates. The objective of the project AIMS (Seismic Testing of Adjacent Interacting Masonry Structures), included in the H2020 project SERA, is to provide such experimental data by testing an aggregate of two buildings under two horizontal components of dynamic excitation. The test unit is built at half-scale, with a two-storey building and a one-storey building. The buildings share one common wall while the fa{\c{c}}ade walls are connected by dry joints. The floors are at different heights leading to a complex dynamic response of this smallest possible building aggregate. The shake table test is conducted at the LNEC seismic testing facility. The testing sequence comprises four levels of shaking: 25\%, 50\%, 75\% and 100\% of nominal shaking table capacity. Extensive instrumentation, including accelerometers, displacement transducers and optical measurement systems, provides detailed information on the building aggregate response. Special attention is paid to the interface opening, the globa}, language = {en} }