@incollection{HoffschmidtAlexopoulosRauetal.2022, author = {Hoffschmidt, Bernhard and Alexopoulos, Spiros and Rau, Christoph and Sattler, Johannes, Christoph and Anthrakidis, Anette and Teixeira Boura, Cristiano Jos{\´e} and O'Connor, B. and Chico Caminos, R.A. and Rend{\´o}n, C. and Hilger, P.}, title = {Concentrating solar power}, series = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, booktitle = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-12-819734-9}, pages = {670 -- 724}, year = {2022}, abstract = {The focus of this chapter is the production of power and the use of the heat produced from concentrated solar thermal power (CSP) systems. The chapter starts with the general theoretical principles of concentrating systems including the description of the concentration ratio, the energy and mass balance. The power conversion systems is the main part where solar-only operation and the increase in operational hours. Solar-only operation include the use of steam turbines, gas turbines, organic Rankine cycles and solar dishes. The operational hours can be increased with hybridization and with storage. Another important topic is the cogeneration where solar cooling, desalination and of heat usage is described. Many examples of commercial CSP power plants as well as research facilities from the past as well as current installed and in operation are described in detail. The chapter closes with economic and environmental aspects and with the future potential of the development of CSP around the world.}, language = {en} } @incollection{HoffschmidtAlexopoulosGoettscheetal.2022, author = {Hoffschmidt, Bernhard and Alexopoulos, Spiros and G{\"o}ttsche, Joachim and Sauerborn, Markus and Kaufhold, O.}, title = {High Concentration Solar Collectors}, series = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, booktitle = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-12-819734-9}, doi = {10.1016/B978-0-12-819727-1.00058-3}, pages = {198 -- 245}, year = {2022}, abstract = {Solar thermal concentrated power is an emerging technology that provides clean electricity for the growing energy market. To the solar thermal concentrated power plant systems belong the parabolic trough, the Fresnel collector, the solar dish, and the central receiver system. For high-concentration solar collector systems, optical and thermal analysis is essential. There exist a number of measurement techniques and systems for the optical and thermal characterization of the efficiency of solar thermal concentrated systems. For each system, structure, components, and specific characteristics types are described. The chapter presents additionally an outline for the calculation of system performance and operation and maintenance topics. One main focus is set to the models of components and their construction details as well as different types on the market. In the later part of this article, different criteria for the choice of technology are analyzed in detail.}, language = {en} } @incollection{WeberBomholtButenweg2022, author = {Weber, Felix and Bomholt, Frederik and Butenweg, Christoph}, title = {Erdbeben- und Schwingungsschutz von Bauwerken}, series = {2023 BetonKalender: Wasserundurchl{\"a}ssiger Beton, Br{\"u}ckenbau}, booktitle = {2023 BetonKalender: Wasserundurchl{\"a}ssiger Beton, Br{\"u}ckenbau}, editor = {Bergmeister, Konrad and Fingerloos, Frank and W{\"o}rner, Johann-Dietrich}, publisher = {Ernst \& Sohn}, address = {Berlin}, isbn = {9783433611180}, doi = {10.1002/9783433611180.ch16}, pages = {779 -- 859}, year = {2022}, abstract = {Dieser Beitrag beschreibt die herk{\"o}mmlichen Maßnahmen wie die Kapazit{\"a}tsbemessung der Tragwerksstruktur, die Isolation des Bauwerks mittels Basisisolatoren, die D{\"a}mpfungserh{\"o}hung der Struktur mittels Inter-Story-D{\"a}mpfern und die Schwingungsreduktion mittels Schwingungstilgern gegen Einwirkungen durch Erdbeben, Wind, Verkehr und Personen auf die Bauwerke. Erg{\"a}nzend wird die erdbebengerechte Auslegung und Isolation von nichttragenden Bauteilen behandelt. F{\"u}r die betrachteten Systeme werden die Bewegungsdifferenzialgleichungen unter Ber{\"u}cksichtigung der wesentlichen Nichtlinearit{\"a}ten angegeben. Die vorgestellten Weiterentwicklungen in den Bereichen der Basisisolatoren, D{\"a}mpfern und Schwingungstilgern zeigen, dass das modellbasierte Design mittels Simulation ein sehr effektives, {\"o}konomisches und dank der heutigen Computerleistung auch zeiteffizientes Werkzeug darstellt.}, language = {de} } @incollection{GkatzogiasVeljkovivPohorylesetal.2022, author = {Gkatzogias, Konstantinos and Veljkoviv, Ana and Pohoryles, Daniel A. and Tsionis, Georgios and Bournas, Dionysios A. and Crowley, Helen and Norl{\´e}n, Hedvig and Butenweg, Christoph and Gervasio, Helena and Manfredi, Vincenzo and Masi, Angelo and Zaharieva, Roumiana}, title = {Policy practice and regional impact assessment for building renovation}, series = {REEBUILD Integrated Techniques for the Seismic Strengthening \& Energy Efficiency of Existing Buildings}, booktitle = {REEBUILD Integrated Techniques for the Seismic Strengthening \& Energy Efficiency of Existing Buildings}, editor = {Gkatzogias, Konstantinos and Tsionis, Georgios}, publisher = {Publications Office of the European Union}, address = {Luxembourg}, isbn = {978-92-76-60454-9}, issn = {1831-9424}, doi = {10.2760/883122}, pages = {1 -- 68}, year = {2022}, abstract = {The work presented in this report provides scientific support to building renovation policies in the EU by promoting a holistic point of view on the topic. Integrated renovation can be seen as a nexus between European policies on disaster resilience, energy efficiency and circularity in the building sector. An overview of policy measures for the seismic and energy upgrading of buildings across EU Member States identified only a few available measures for combined upgrading. Regulatory framework, financial instruments and digital tools similar to those for energy renovation, together with awareness and training may promote integrated renovation. A framework for regional prioritisation of building renovation was put forward, considering seismic risk, energy efficiency, and socioeconomic vulnerability independently and in an integrated way. Results indicate that prioritisation of building renovation is a multidimensional problem. Depending on priorities, different integrated indicators should be used to inform policies and accomplish the highest relative or most spread impact across different sectors. The framework was further extended to assess the impact of renovation scenarios across the EU with a focus on priority regions. Integrated renovation can provide a risk-proofed, sustainable, and inclusive built environment, presenting an economic benefit in the order of magnitude of the highest benefit among the separate interventions. Furthermore, it presents the unique capability of reducing fatalities and energy consumption at the same time and, depending on the scenario, to a greater extent.}, language = {en} } @inproceedings{Butenweg2022, author = {Butenweg, Christoph}, title = {Seismic design and evaluation of industrial facilities}, series = {Progresses in European Earthquake Engineering and Seismology. Third European Conference on Earthquake Engineering and Seismology - Bucharest, 2022}, booktitle = {Progresses in European Earthquake Engineering and Seismology. Third European Conference on Earthquake Engineering and Seismology - Bucharest, 2022}, editor = {Vacareanu, Radu and Ionescu, Constantin}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-15103-3}, issn = {2524-342X}, doi = {10.1007/978-3-031-15104-0}, pages = {449 -- 464}, year = {2022}, abstract = {Industrial facilities must be thoroughly designed to withstand seismic actions as they exhibit an increased loss potential due to the possibly wideranging damage consequences and the valuable process engineering equipment. Past earthquakes showed the social and political consequences of seismic damage to industrial facilities and sensitized the population and politicians worldwide for the possible hazard emanating from industrial facilities. However, a holistic approach for the seismic design of industrial facilities can presently neither be found in national nor in international standards. The introduction of EN 1998-4 of the new generation of Eurocode 8 will improve the normative situation with specific seismic design rules for silos, tanks and pipelines and secondary process components. The article presents essential aspects of the seismic design of industrial facilities based on the new generation of Eurocode 8 using the example of tank structures and secondary process components. The interaction effects of the process components with the primary structure are illustrated by means of the experimental results of a shaking table test of a three story moment resisting steel frame with different process components. Finally, an integrated approach of digital plant models based on building information modelling (BIM) and structural health monitoring (SHM) is presented, which provides not only a reliable decision-making basis for operation, maintenance and repair but also an excellent tool for rapid assessment of seismic damage.}, language = {en} } @techreport{GhinaiyaLehmannGoettsche2022, author = {Ghinaiya, Jagdishkumar and Lehmann, Thomas and G{\"o}ttsche, Joachim}, title = {LOCAL+ - ein kreislauff{\"a}higer Holzmodulbau mit nachhaltigem Energie- und Wohnraumkonzept}, series = {Bauphysik}, volume = {44}, journal = {Bauphysik}, number = {3}, publisher = {Ernst \& Sohn}, address = {Hoboken}, issn = {0171-5445 (Print)}, doi = {10.1002/bapi.202200010}, pages = {136 -- 142}, year = {2022}, abstract = {Mit dem Beitrag des Teams der FH Aachen zum SDE 21/22 wird im Projekt LOCAL+ ein kreislauff{\"a}higer Holzmodulbau mit einem innovativen Wohnraumkonzept geplant und umgesetzt. Ziel dieses Konzeptes ist die Verringerung des stetig steigenden Wohnfl{\"a}chenbedarfs durch ein Raum-in-Raum Konzept. Geb{\"a}udetechnisch wird in dem Projekt nicht nur das Einzelgeb{\"a}ude betrachtet, sondern unter Ber{\"u}cksichtigung des Geb{\"a}udebestandes wird f{\"u}r das Quartier ein innovatives und nachhaltiges Energiekonzept entwickelt. Ein zentrales Wasserstoffsystem ist f{\"u}r ein Quartier geplant, um den Stromverbrauch aus dem Netz im Winter zu reduzieren. Zentraler Bestandteil des TGA-Konzepts ist ein unterirdischer Eisspeicher, eine PVT und eine W{\"a}rmepumpe mit intelligenter Regelstrategie. Ein Teil des neuen Geb{\"a}udes (Design Challenge DC) wird in Wuppertal als Hausdemonstrationseinheit (HDU) pr{\"a}sentiert. Eine hygrothermische Simulation der HDU wurde mit der WUFI-Software durchgef{\"u}hrt. Da im Innenraum Lehmmodule und -platten als Feuchtigkeitspuffer verwendet werden, spielen die Themen Feuchtigkeit, Holzf{\"a}ule und Schimmelwachstum eine wichtige Rolle.}, language = {de} } @article{RossiWinandsButenweg2022, author = {Rossi, Leonardo and Winands, Mark H. M. and Butenweg, Christoph}, title = {Monte Carlo Tree Search as an intelligent search tool in structural design problems}, series = {Engineering with Computers : An International Journal for Simulation-Based Engineering}, volume = {38}, journal = {Engineering with Computers : An International Journal for Simulation-Based Engineering}, number = {4}, editor = {Zhang, Jessica}, publisher = {Springer Nature}, address = {Cham}, issn = {1435-5663}, doi = {10.1007/s00366-021-01338-2}, pages = {3219 -- 3236}, year = {2022}, abstract = {Monte Carlo Tree Search (MCTS) is a search technique that in the last decade emerged as a major breakthrough for Artificial Intelligence applications regarding board- and video-games. In 2016, AlphaGo, an MCTS-based software agent, outperformed the human world champion of the board game Go. This game was for long considered almost infeasible for machines, due to its immense search space and the need for a long-term strategy. Since this historical success, MCTS is considered as an effective new approach for many other scientific and technical problems. Interestingly, civil structural engineering, as a discipline, offers many tasks whose solution may benefit from intelligent search and in particular from adopting MCTS as a search tool. In this work, we show how MCTS can be adapted to search for suitable solutions of a structural engineering design problem. The problem consists of choosing the load-bearing elements in a reference reinforced concrete structure, so to achieve a set of specific dynamic characteristics. In the paper, we report the results obtained by applying both a plain and a hybrid version of single-agent MCTS. The hybrid approach consists of an integration of both MCTS and classic Genetic Algorithm (GA), the latter also serving as a term of comparison for the results. The study's outcomes may open new perspectives for the adoption of MCTS as a design tool for civil engineers.}, language = {en} } @article{MarinkovićButenweg2022, author = {Marinković, Marko and Butenweg, Christoph}, title = {Experimental testing of decoupled masonry infills with steel anchors for out-of-plane support under combined in-plane and out-of-plane seismic loading}, series = {Construction and Building Materials}, volume = {318}, journal = {Construction and Building Materials}, number = {1}, editor = {Ford, Michael C.}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1879-0526}, doi = {10.1016/j.conbuildmat.2021.126041}, year = {2022}, abstract = {Because of simple construction process, high energy efficiency, significant fire resistance and excellent sound isolation, masonry infilled reinforced concrete (RC) frame structures are very popular in most of the countries in the world, as well as in seismic active areas. However, many RC frame structures with masonry infills were seriously damaged during earthquake events, as the traditional infills are generally constructed with direct contact to the RC frame which brings undesirable infill/frame interaction. This interaction leads to the activation of the equivalent diagonal strut in the infill panel, due to the RC frame deformation, and combined with seismically induced loads perpendicular to the infill panel often causes total collapses of the masonry infills and heavy damages to the RC frames. This fact was the motivation for developing different approaches for improving the behaviour of masonry infills, where infill isolation (decoupling) from the frame has been more intensively studied in the last decade. In-plane isolation of the infill wall reduces infill activation, but causes the need for additional measures to restrain out-of-plane movements. This can be provided by installing steel anchors, as proposed by some researchers. Within the framework of European research project INSYSME (Innovative Systems for Earthquake Resistant Masonry Enclosures in Reinforced Concrete Buildings) the system based on a use of elastomers for in-plane decoupling and steel anchors for out-of-plane restrain was tested. This constructive solution was tested and deeply investigated during the experimental campaign where traditional and decoupled masonry infilled RC frames with anchors were subjected to separate and combined in-plane ‬and out-of-plane loading. Based on a detailed evaluation and comparison of the test results, the performance and effectiveness of the developed system are illustrated.}, language = {en} } @article{MorandiButenwegBreisetal.2022, author = {Morandi, Paolo and Butenweg, Christoph and Breis, Khaled and Beyer, Katrin and Magenes, Guido}, title = {Latest findings on the behaviour factor q for the seismic design of URM buildings}, series = {Bulletin of Earthquake Engineering}, volume = {20}, journal = {Bulletin of Earthquake Engineering}, number = {11}, editor = {Ansal, Atilla}, publisher = {Springer Nature}, address = {Cham}, issn = {1573-1456}, doi = {10.1007/s10518-022-01419-7}, pages = {5797 -- 5848}, year = {2022}, abstract = {Recent earthquakes as the 2012 Emilia earthquake sequence showed that recently built unreinforced masonry (URM) buildings behaved much better than expected and sustained, despite the maximum PGA values ranged between 0.20-0.30 g, either minor damage or structural damage that is deemed repairable. Especially low-rise residential and commercial masonry buildings with a code-conforming seismic design and detailing behaved in general very well without substantial damages. The low damage grades of modern masonry buildings that was observed during this earthquake series highlighted again that codified design procedures based on linear analysis can be rather conservative. Although advances in simulation tools make nonlinear calculation methods more readily accessible to designers, linear analyses will still be the standard design method for years to come. The present paper aims to improve the linear seismic design method by providing a proper definition of the q-factor of URM buildings. These q-factors are derived for low-rise URM buildings with rigid diaphragms which represent recent construction practise in low to moderate seismic areas of Italy and Germany. The behaviour factor components for deformation and energy dissipation capacity and for overstrength due to the redistribution of forces are derived by means of pushover analyses. Furthermore, considerations on the behaviour factor component due to other sources of overstrength in masonry buildings are presented. As a result of the investigations, rationally based values of the behaviour factor q to be used in linear analyses in the range of 2.0-3.0 are proposed.}, language = {en} } @article{ButenwegMarinkovicPhlippetal.2022, author = {Butenweg, Christoph and Marinkovic, Marko and Phlipp, Michel and Lins, Robin and Renaut, Philipp}, title = {Isolierung und BIM-basiertes Bauwerksmonitoring des neuen Geb{\"a}udekomplexes f{\"u}r das BioSense-Institut in Novi Sad, Serbien}, series = {Bauingenieur}, volume = {97}, journal = {Bauingenieur}, number = {6}, editor = {Haghsheno, Shervin}, publisher = {VDI Fachmedien}, address = {D{\"u}sseldorf}, issn = {1436-4867}, doi = {10.37544/0005-6650-2022-06-28}, pages = {S3 -- S5}, year = {2022}, abstract = {Im Norden von Serbien erfolgt in Novi Sad der Neubau eines modernen Forschungsgeb{\"a}udes f{\"u}r das BioSense-Institut mit finanzieller Unterst{\"u}tzung durch die Eu-rop{\"a}ische Union. Der Geb{\"a}udeteil mit Laboren wird zum Schutz und zur Sicherstellung des reibungslosen Betriebs der sensiblen und kapitalintensiven technischen Einbauten mit ei-ner Erdbebenisolierung mit integrierter K{\"o}rperschallisolation versehen. Zus{\"a}tzlich wird der entkoppelte Laborteil des For-schungsgeb{\"a}udes mit einem BIM-basierten Bauwerksmonito-ring versehen, um {\"A}nderungen des Geb{\"a}udezustands jederzeit abfragen und beurteilen zu k{\"o}nnen.}, language = {de} }