@misc{HeringUlberTippkoetter2016, author = {Hering, T. and Ulber, Roland and Tippk{\"o}tter, Nils}, title = {Antimikrobielle Oberfl{\"a}chenmodifikation durch Mikropartikel}, series = {Chemie Ingenieur Technik}, volume = {88}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, doi = {10.1002/cite.201650084}, pages = {1302}, year = {2016}, abstract = {Die Ausbildung von Biofilmen in technischen Anlagen, wie z. B. K{\"u}hlkreisl{\"a}ufen, Wasseraufbereitungssystemen und Bioreaktoren, f{\"u}hren zu Materialsch{\"a}den (Biofouling) und stark erh{\"o}htem Energieaufwand. Im Rahmen der aktuellen Forschungsarbeiten erfolgen aktive sowie passive Bio-Modifikationen auf funktionalisierten magnetischen Mikropartikelober-fl{\"a}chen. Um die verschiedenen funktionalisierten magnetischen Mikropartikel zu analysieren und ihre antimikrobielle Wirkung zu testen, wird der Einsatz einer 3D-gedruckten, magnetischen Plattform f{\"u}r ein Fluoreszenz-basiertes Screening-System untersucht. F{\"u}r den Oberfl{\"a}chenschutz wurden verschiedene, antimikrobiell funktionalisierte Partikelkombinationen mit dem Mikroorganismus Escherichia coli GFPmut2 in Bezug auf aktiven Oberfl{\"a}chenschutz verglichen. Um die antimikrobielle Oberfl{\"a}cheneffekte von synergistischen Kombinationen unterschiedlich funktionalisierter Partikel zu bestimmen, werden Oberfl{\"a}chen einem Magnetfeld ausgesetzt, das die Mikropartikel als definierte Schicht auf ihnen zur{\"u}ck h{\"a}lt. Diese modifizierten Oberfl{\"a}chen k{\"o}nnen sowohl durch Fluoreszenzspektroskopie als auch -mikroskopie analysiert werden.}, language = {de} } @misc{WulfhorstMerseburgTippkoetter2016, author = {Wulfhorst, H. and Merseburg, J. and Tippk{\"o}tter, Nils}, title = {Batteriekomponenten aus nachwachsenden Rohstoffen}, series = {Chemie Ingenieur Technik}, volume = {88}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201650333}, pages = {1234 -- 1235}, year = {2016}, abstract = {In diesem Beitrag geht es um die Integration von Stoffstr{\"o}men einer Lignocellulose-Bioraffinerie in Verfahren zur Batterieherstellung. Pflanzliche Reststoffe aus der Biokraftstoffherstellung wie Lignin sollen zur Herstellung neuer Batteriematerialien verwendet werden. Hierbei wird das Lignin als Matrix f{\"u}r die vorgraphitischen C-haltigen Einlagerungsverbindungen in den Elektroden genutzt. Die Si-C-Komposite werden durch das Einbetten von Si in eine Ligninmatrix mit anschließender Carbonisierung hergestellt. Das Lignin hierf{\"u}r wird durch die sequentielle hydrothermale Vorbehandlung von Buchenholz bei variablen Bedingungen gewonnen und mit Si-Nanopartikel sowie als Referenz ohne Si-Nanopartikel gef{\"a}llt. Die Ergebnisse zeigen, dass die sequenzielle Vorbehandlung h{\"o}here Ausbeuten im Vergleich zum LHW- oder Organosolv-Aufschluss liefert. Um eine Anode herzustellen, wurde das resultierende Si-C-Kompositmaterial carbonisiert, auf einen Stromsammler aufgetragen und elektro-chemisch charakterisiert. Der Einfluss der Vorbehandlungsschritte auf den Herstellungsprozess und die {\"o}konomische Bewertung des untersuchten Bioraffinerie-Prozesses wurde mithilfe eines Stoffstrommodells analysiert.}, language = {de} }