@article{HuckPoghossianBaeckeretal.2014, author = {Huck, Christina and Poghossian, Arshak and B{\"a}cker, Matthias and Reisert, Steffen and Schubert, J. and Zander, W. and Begoyan, V. K. and Buniatyan, V. V. and Sch{\"o}ning, Michael Josef}, title = {Chemical sensors based on a high-k perovskite oxide of barium strontium titanate}, series = {Procedia Engineering}, volume = {87}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2014.11.258}, pages = {28 -- 31}, year = {2014}, abstract = {High-k perovskite oxide of barium strontium titanate (BST) represents a very attractive multi-functional transducer material for the development of (bio-)chemical sensors for liquids. In this work, BST films have been applied as a sensitive transducer material for a label-free detection of adsorbed charged macromolecules (positively charged polyelectrolytes) and concentration of hydrogen peroxide vapor as well as protection insulator layer for a contactless electrolyte-conductivity sensor. The experimental results of characterization of individual sensors are presented. Special emphasis is devoted towards the development of a capacitively-coupled contactless electrolyte-conductivity sensor.}, language = {en} } @article{SchusserBaeckerKrischeretal.2014, author = {Schusser, Sebastian and B{\"a}cker, Matthias and Krischer, M. and Wenzel, L. and Leinhos, Marcel and Poghossian, Arshak and Biselli, Manfred and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Enzymatically catalyzed degradation of biodegradable polymers investigated by means of a semiconductor-based field-effect sensor}, series = {Procedia Engineering}, volume = {87}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2014.11.689}, pages = {1314 -- 1317}, year = {2014}, abstract = {A semiconductor field-effect device has been used for an enzymatically catalyzed degradation of biopolymers for the first time. This novel technique is capable to monitor the degradation process of multiple samples in situ and in real-time. As model system, the degradation of the biopolymer poly(D, L-lactic acid) has been monitored in the degradation medium containing the enzyme lipase from Rhizomucor miehei. The obtained results demonstrate the potential of capacitive field-effect sensors for degradation studies of biodegradable polymers.}, language = {en} } @misc{NoetzoldBragardFinketal.2014, author = {N{\"o}tzold, K. and Bragard, Michael and Fink, K. and Griessel, R. and Wegener, R.}, title = {Cascaded H-bridge converter with transformer based cell power balancing in each voltage level : [Patentschrift]}, publisher = {Europ{\"a}isches Patentamt / United States Patent and Trademark Office [u.a.]}, address = {Den Haag / Alexandria, VA}, pages = {16 S. : graph. Darst.}, year = {2014}, language = {en} } @article{Stulpe2014, author = {Stulpe, Werner}, title = {From the attempt of certain classical reformulations of quantum mechanics to quasi-probability representations}, series = {Journal of Mathematical Physics}, volume = {55}, journal = {Journal of Mathematical Physics}, number = {1}, publisher = {AIP Publishing}, address = {College Park, Md.}, issn = {222-488}, doi = {10.1063/1.4861939}, pages = {Artikel 012109}, year = {2014}, abstract = {The concept of an injective affine embedding of the quantum states into a set of classical states, i.e., into the set of the probability measures on some measurable space, as well as its relation to statistically complete observables is revisited, and its limitation in view of a classical reformulation of the statistical scheme of quantum mechanics is discussed. In particular, on the basis of a theorem concerning a non-denseness property of a set of coexistent effects, it is shown that an injective classical embedding of the quantum states cannot be supplemented by an at least approximate classical description of the quantum mechanical effects. As an alternative approach, the concept of quasi-probability representations of quantum mechanics is considered.}, language = {en} } @article{DachwaldMikuckiTulaczyketal.2014, author = {Dachwald, Bernd and Mikucki, Jill and Tulaczyk, Slawek and Digel, Ilya and Espe, Clemens and Feldmann, Marco and Francke, Gero and Kowalski, Julia and Xu, Changsheng}, title = {IceMole : A maneuverable probe for clean in situ analysis and sampling of subsurface ice and subglacial aquatic ecosystems}, series = {Annals of Glaciology}, volume = {55}, journal = {Annals of Glaciology}, number = {65}, publisher = {Cambridge University Press}, address = {Cambridge}, issn = {1727-5644}, doi = {10.3189/2014AoG65A004}, pages = {14 -- 22}, year = {2014}, abstract = {There is significant interest in sampling subglacial environments for geobiological studies, but they are difficult to access. Existing ice-drilling technologies make it cumbersome to maintain microbiologically clean access for sample acquisition and environmental stewardship of potentially fragile subglacial aquatic ecosystems. The IceMole is a maneuverable subsurface ice probe for clean in situ analysis and sampling of glacial ice and subglacial materials. The design is based on the novel concept of combining melting and mechanical propulsion. It can change melting direction by differential heating of the melting head and optional side-wall heaters. The first two prototypes were successfully tested between 2010 and 2012 on glaciers in Switzerland and Iceland. They demonstrated downward, horizontal and upward melting, as well as curve driving and dirt layer penetration. A more advanced probe is currently under development as part of the Enceladus Explorer (EnEx) project. It offers systems for obstacle avoidance, target detection, and navigation in ice. For the EnEx-IceMole, we will pay particular attention to clean protocols for the sampling of subglacial materials for biogeochemical analysis. We plan to use this probe for clean access into a unique subglacial aquatic environment at Blood Falls, Antarctica, with return of a subglacial brine sample.}, language = {en} } @article{LevesqueSiegwolfEilmannetal.2014, author = {L{\´e}vesque, Mathieu and Siegwolf, Rolf and Eilmann, Britta and Saurer, Matthias and Rigling, Andreas}, title = {Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions}, series = {New Phytologist}, volume = {203}, journal = {New Phytologist}, number = {1}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {1469-8137 (Online)}, doi = {10.1111/nph.12772}, pages = {94 -- 109}, year = {2014}, language = {en} } @inproceedings{NeumannFerreinKallweitetal.2014, author = {Neumann, Tobias and Ferrein, Alexander and Kallweit, Stephan and Scholl, Ingrid}, title = {Towards a mobile mapping robot for underground mines}, series = {7th Conference of Robotics and Mechatronics : RobMech 2014 : 27th and 28th Nov. 2014, Cape Town}, booktitle = {7th Conference of Robotics and Mechatronics : RobMech 2014 : 27th and 28th Nov. 2014, Cape Town}, organization = {Conference of Robotics and Mechatronics <7, 2014, Cape Town, South Africa>}, pages = {1 -- 6}, year = {2014}, language = {en} } @incollection{AlhwarinFerreinScholl2014, author = {Alhwarin, Faraj and Ferrein, Alexander and Scholl, Ingrid}, title = {IR stereo kinect: improving depth images by combining structured light with IR stereo}, series = {PRICAI 2014: Trends in artificial intelligence : 13th Pacific Rim International Conference on Artificial Intelligence : Gold Coast, QLD, Australia, December 1-5, 2014 : proceedings. (Lecture notes in computer science ; vol. 8862)}, booktitle = {PRICAI 2014: Trends in artificial intelligence : 13th Pacific Rim International Conference on Artificial Intelligence : Gold Coast, QLD, Australia, December 1-5, 2014 : proceedings. (Lecture notes in computer science ; vol. 8862)}, publisher = {Springer}, address = {M{\"u}nchen}, isbn = {978-3-319-13559-5 (Print) ; 978-3-319-13560-1 (E-Book)}, doi = {10.1007/978-3-319-13560-1_33}, pages = {409 -- 421}, year = {2014}, abstract = {RGB-D sensors such as the Microsoft Kinect or the Asus Xtion are inexpensive 3D sensors. A depth image is computed by calculating the distortion of a known infrared light (IR) pattern which is projected into the scene. While these sensors are great devices they have some limitations. The distance they can measure is limited and they suffer from reflection problems on transparent, shiny, or very matte and absorbing objects. If more than one RGB-D camera is used the IR patterns interfere with each other. This results in a massive loss of depth information. In this paper, we present a simple and powerful method to overcome these problems. We propose a stereo RGB-D camera system which uses the pros of RGB-D cameras and combine them with the pros of stereo camera systems. The idea is to utilize the IR images of each two sensors as a stereo pair to generate a depth map. The IR patterns emitted by IR projectors are exploited here to enhance the dense stereo matching even if the observed objects or surfaces are texture-less or transparent. The resulting disparity map is then fused with the depth map offered by the RGB-D sensor to fill the regions and the holes that appear because of interference, or due to transparent or reflective objects. Our results show that the density of depth information is increased especially for transparent, shiny or matte objects.}, language = {en} } @inproceedings{FateriGebhardt2014, author = {Fateri, Miranda and Gebhardt, Andreas}, title = {Jewelry fabrication via selective laser melting of glass}, series = {ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis Volume 1: Applied Mechanics; Automotive Systems; Biomedical Biotechnology Engineering; Computational Mechanics; Design; Digital Manufacturing; Education; Marine and Aerospace Applications}, booktitle = {ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis Volume 1: Applied Mechanics; Automotive Systems; Biomedical Biotechnology Engineering; Computational Mechanics; Design; Digital Manufacturing; Education; Marine and Aerospace Applications}, isbn = {978-0-7918-4583-7}, doi = {10.1115/ESDA2014-20380}, pages = {V001T06A005}, year = {2014}, abstract = {Selective Laser Melting (SLM) is one of the Additive Manufacturing (AM) technologies applicable for producing complex geometries which are typically expensive or difficult to fabricate using conventional methods. This process has been extensively investigated experimentally for various metals and the fabrication process parameters have been established for different applications; however, fabricating 3D glass objects using SLM technology has remained a challenge so far although it could have many applications. This paper presents a summery on various experimental evaluations of a material database incorporating the build parameters of glass powder using the SLM process for jewelry applications.}, language = {en} } @inproceedings{GebhardtRitzSiekmannetal.2014, author = {Gebhardt, Andreas and Ritz, Thomas and Siekmann, Kirsten and Wallenborn, Ramona}, title = {Additive manufacturing businesses in the process chain of individualized mass products}, series = {DDMC 2014 : Proceedings of the Fraunhofer Direct Digital Manufacturing Conference}, booktitle = {DDMC 2014 : Proceedings of the Fraunhofer Direct Digital Manufacturing Conference}, editor = {Demmer, Axel}, publisher = {Fraunhofer}, address = {Stuttgart}, isbn = {978-3-8396-9128-1 (E-Book)}, year = {2014}, language = {en} }