@article{vonKnobelsdorfBrenkenhoffFrauenrathProthmannetal.2010, author = {von Knobelsdorf-Brenkenhoff, Florian and Frauenrath, Tobias and Prothmann, Marcel and Dieringer, Matthias A. and Hezel, Fabian and Renz, Wolfgang and Kretschel, Kerstin and Niendorf, Thoralf and Schulz-Menger, Jeanette}, title = {Cardiac chamber quantification using magnetic resonance imaging at 7 Tesla—a pilot study}, volume = {20}, publisher = {Springer}, address = {Berlin, Heidelberg}, issn = {0938-7994}, doi = {10.1007/s00330-010-1888-2}, pages = {2844 -- 2852}, year = {2010}, abstract = {Objectives Interest in cardiovascular magnetic resonance (CMR) at 7 T is motivated by the expected increase in spatial and temporal resolution, but the method is technically challenging. We examined the feasibility of cardiac chamber quantification at 7 T. Methods A stack of short axes covering the left ventricle was obtained in nine healthy male volunteers. At 1.5 T, steady-state free precession (SSFP) and fast gradient echo (FGRE) cine imaging with 7 mm slice thickness (STH) were used. At 7 T, FGRE with 7 mm and 4 mm STH were applied. End-diastolic volume, end-systolic volume, ejection fraction and mass were calculated. Results All 7 T examinations provided excellent blood/myocardium contrast for all slice directions. No significant difference was found regarding ejection fraction and cardiac volumes between SSFP at 1.5 T and FGRE at 7 T, while volumes obtained from FGRE at 1.5 T were underestimated. Cardiac mass derived from FGRE at 1.5 and 7 T was larger than obtained from SSFP at 1.5 T. Agreement of volumes and mass between SSFP at 1.5 T and FGRE improved for FGRE at 7 T when combined with an STH reduction to 4 mm. Conclusions This pilot study demonstrates that cardiac chamber quantification at 7 T using FGRE is feasible and agrees closely with SSFP at 1.5 T.}, language = {en} } @article{VorstFerreinLakemeyer2006, author = {Vorst, Phillip and Ferrein, Alexander and Lakemeyer, Gerhard}, title = {AllemaniACs3D team description}, pages = {1 -- 6}, year = {2006}, language = {en} } @article{VosLagemaatBarentszetal.2014, author = {Vos, E. K. and Lagemaat, M. W. and Barentsz, J. O. and F{\"u}tterer, J. J. and Zamecnik, P. and Roozen, H. and Orzada, S. and Bitz, Andreas and Maas, M. C. and Scheenen, T. W. J.}, title = {Image quality and cancer visibility of T2-weighted Magnetic Resonance Imaging of the prostate at 7 Tesla}, series = {European Radiology}, volume = {24}, journal = {European Radiology}, number = {8}, publisher = {Springer}, address = {Cham}, issn = {1432-1084}, doi = {10.1007/s00330-014-3234-6}, pages = {1950 -- 1958}, year = {2014}, abstract = {Objectives To assess the image quality of T2-weighted (T2w) magnetic resonance imaging of the prostate and the visibility of prostate cancer at 7 Tesla (T). Materials \& methods Seventeen prostate cancer patients underwent T2w imaging at 7T with only an external transmit/receive array coil. Three radiologists independently scored images for image quality, visibility of anatomical structures, and presence of artefacts. Krippendorff's alpha and weighted kappa statistics were used to assess inter-observer agreement. Visibility of prostate cancer lesions was assessed by directly linking the T2w images to the confirmed location of prostate cancer on histopathology. Results T2w imaging at 7T was achievable with 'satisfactory' (3/5) to 'good' (4/5) quality. Visibility of anatomical structures was predominantly scored as 'satisfactory' (3/5) and 'good' (4/5). If artefacts were present, they were mostly motion artefacts and, to a lesser extent, aliasing artefacts and noise. Krippendorff's analysis revealed an α = 0.44 between three readers for the overall image quality scores. Clinically significant cancer lesions in both peripheral zone and transition zone were visible at 7T. Conclusion T2w imaging with satisfactory to good quality can be routinely acquired, and cancer lesions were visible in patients with prostate cancer at 7T using only an external transmit/receive body array coil.}, language = {en} } @misc{WaicziesKuehneWinteretal.2013, author = {Waiczies, Helmar and K{\"u}hne, Andr{\´e} and Winter, Lukas and Frauenrath, Tobias and Hoffmann, Werner and Ittermann, Bernd and Waiczies, Sonia and Niendorf, Thoralf}, title = {Towards theranostics of rheumatoid arthritis: 1H/19F imaging of non-steroidal anti-inflammatory drugs in hand and wrist at 7 Tesla}, series = {2013 ISMRM Annual Meeting Proceedings}, journal = {2013 ISMRM Annual Meeting Proceedings}, issn = {1545-4428}, year = {2013}, abstract = {We have developed a double-tuned ¹H/¹⁹F birdcage resonator dedicated for hand and wrist imaging at 7 T to locally image non-steroidal anti-inflammatory drugs (NSAID) such as 2-{[3-(Trifluoromethyl) phenyl]amino}benzoic acid. The preliminary in vivo images acquired by the double-tuned ¹H/¹⁹F birdcage resonator demonstrate the feasibility for ¹H/¹⁹F hand- and wrist-imaging at 7 T. While the diagnostic quality of the coil needs to be assessed in patients with inflammatory rheumatoid disease, first ¹⁹F images of the NSAID are encouraging, and point towards the prospect of applying ¹⁹F-MRI to visualize and quantify the concentration of therapeutically-active compound at the sites of inflammation.}, language = {en} } @inproceedings{WalentaSchellekensFerreinetal.2017, author = {Walenta, Robert and Schellekens, Twan and Ferrein, Alexander and Schiffer, Stefan}, title = {A decentralised system approach for controlling AGVs with ROS}, series = {AFRICON, Proceedings}, booktitle = {AFRICON, Proceedings}, publisher = {IEEE}, isbn = {978-1-5386-2775-4}, issn = {2153-0033}, doi = {10.1109/AFRCON.2017.8095693}, pages = {1436 -- 1441}, year = {2017}, language = {en} } @inproceedings{WalterGligorevicDetertetal.2010, author = {Walter, Michael and Gligorevic, Snjezana and Detert, Thorben and Schnell, Michael}, title = {UHF/VHF air-to-air propagation measurements}, series = {Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP) : 12 - 16 April 2010, Barcelona, Spain}, booktitle = {Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP) : 12 - 16 April 2010, Barcelona, Spain}, organization = {European Association on Antennas and Propagation}, isbn = {978-1-4244-6431-9 ; 978-84-7653-472-4}, pages = {1 -- 5}, year = {2010}, language = {en} } @inproceedings{WalterElsenMuelleretal.1999, author = {Walter, Peter and Elsen, Ingo and M{\"u}ller, Holger and Kraiss, Karl-Friedrich}, title = {3D object recognition with a specialized mixtures of experts architecture}, series = {IJCNN'99. International Joint Conference on Neural Networks. Proceedings}, booktitle = {IJCNN'99. International Joint Conference on Neural Networks. Proceedings}, publisher = {IEEE}, address = {New York}, isbn = {0-7803-5529-6}, issn = {1098-7576}, doi = {10.1109/IJCNN.1999.836243}, pages = {3563 -- 3568}, year = {1999}, abstract = {Aim of the AXON2 project (Adaptive Expert System for Object Recogniton using Neuml Networks) is the development of an object recognition system (ORS) capable of recognizing isolated 3d objects from arbitrary views. Commonly, classification is based on a single feature extracted from the original image. Here we present an architecture adapted from the Mixtures of Eaqerts algorithm which uses multiple neuml networks to integmte different features. During tmining each neural network specializes in a subset of objects or object views appropriate to the properties of the corresponding feature space. In recognition mode the system dynamically chooses the most relevant features and combines them with maximum eficiency. The remaining less relevant features arz not computed and do therefore not decelerate the-recognition process. Thus, the algorithm is well suited for ml-time applications.}, language = {en} } @inproceedings{WangMensingGligorevicetal.2008, author = {Wang, W. and Mensing, C. and Gligorevic, Snjezana and Jost, T. and Dammann, A.}, title = {Short term statistical analysis of outdoor to indoor propagation channel for geolocations}, series = {Proceedings of the 13th International OFDM Workshop : (InOWo '08), Aug. 27./28. 2008, Hamburg : Session 3A: Systems concepts}, booktitle = {Proceedings of the 13th International OFDM Workshop : (InOWo '08), Aug. 27./28. 2008, Hamburg : Session 3A: Systems concepts}, organization = {International OFDM Workshop <13, 2008, Hamburg>}, pages = {85 -- 89}, year = {2008}, language = {en} } @misc{WiegnerVolkerMainzetal.2022, author = {Wiegner, J. and Volker, H. and Mainz, F. and Backes, A. and L{\"o}ken, M. and H{\"u}ning, Felix}, title = {Wiegand-Effect-Powered Wireless IT Sensor Node}, year = {2022}, abstract = {With the growing interest in small distributed sensors for the "Internet of Things", more attention is being paid to energy harvesting techologies. Reducing or eliminating the need for external power sources or batteries make devices more self-sufficient, more reliable, and reduces maintenance requirements. The Wiegand effect is a proven technology for harvesting small amounts of electrical power from mechanical motion.}, language = {en} } @inproceedings{WiegnerVolkerMainzetal.2022, author = {Wiegner, Jonas and Volker, Hanno and Mainz, Fabian and Backes, Andreas and L{\"o}ken, Michael and H{\"u}ning, Felix}, title = {Wiegand-effect-powered wireless IoT sensor node}, series = {ITG-Fb. 303: Sensoren und Messsysteme}, booktitle = {ITG-Fb. 303: Sensoren und Messsysteme}, publisher = {VDE Verlag GmbH}, address = {Berlin}, isbn = {978-3-8007-5835-7}, pages = {255 -- 260}, year = {2022}, abstract = {In this article we describe an Internet-of-Things sensing device with a wireless interface which is powered by the oftenoverlooked harvesting method of the Wiegand effect. The sensor can determine position, temperature or other resistively measurable quantities and can transmit the data via an ultra-low power ultra-wideband (UWB) data transmitter. With this approach we can energy-self-sufficiently acquire, process, and wirelessly transmit data in a pulsed operation. A proof-of-concept system was built up to prove the feasibility of the approach. The energy consumption of the system is analyzed and traced back in detail to the individual components, compared to the generated energy and processed to identify further optimization options. Based on the proof-of-concept, an application demonstrator was developed. Finally, we point out possible use cases.}, language = {en} }