@inproceedings{SchmidtsKraftSiebigterothetal.2019, author = {Schmidts, Oliver and Kraft, Bodo and Siebigteroth, Ines and Z{\"u}ndorf, Albert}, title = {Schema Matching with Frequent Changes on Semi-Structured Input Files: A Machine Learning Approach on Biological Product Data}, series = {Proceedings of the 21st International Conference on Enterprise Information Systems - Volume 1: ICEIS}, booktitle = {Proceedings of the 21st International Conference on Enterprise Information Systems - Volume 1: ICEIS}, isbn = {978-989-758-372-8}, doi = {10.5220/0007723602080215}, pages = {208 -- 215}, year = {2019}, language = {en} } @inproceedings{SchmidtsKraftSchreiberetal.2018, author = {Schmidts, Oliver and Kraft, Bodo and Schreiber, Marc and Z{\"u}ndorf, Albert}, title = {Continuously evaluated research projects in collaborative decoupled environments}, series = {2018 ACM/IEEE 5th International Workshop on Software Engineering Research and Industrial PracticePractice, May 29, 2018, Gothenburg, Sweden : SER\&IP' 18}, booktitle = {2018 ACM/IEEE 5th International Workshop on Software Engineering Research and Industrial PracticePractice, May 29, 2018, Gothenburg, Sweden : SER\&IP' 18}, publisher = {ACM}, address = {New York, NY}, pages = {1 -- 9}, year = {2018}, abstract = {Often, research results from collaboration projects are not transferred into productive environments even though approaches are proven to work in demonstration prototypes. These demonstration prototypes are usually too fragile and error-prone to be transferred easily into productive environments. A lot of additional work is required. Inspired by the idea of an incremental delivery process, we introduce an architecture pattern, which combines the approach of Metrics Driven Research Collaboration with microservices for the ease of integration. It enables keeping track of project goals over the course of the collaboration while every party may focus on their expert skills: researchers may focus on complex algorithms, practitioners may focus on their business goals. Through the simplified integration (intermediate) research results can be introduced into a productive environment which enables getting an early user feedback and allows for the early evaluation of different approaches. The practitioners' business model benefits throughout the full project duration.}, language = {en} } @inproceedings{SchmidtsBoltesKraftetal.2017, author = {Schmidts, Oliver and Boltes, Maik and Kraft, Bodo and Schreiber, Marc}, title = {Multi-pedestrian tracking by moving Bluetooth-LE beacons and stationary receivers}, series = {2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 18-21 September 2017, Sapporo, Japan}, booktitle = {2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 18-21 September 2017, Sapporo, Japan}, pages = {1 -- 4}, year = {2017}, language = {en} } @inproceedings{KraftWilhelms2005, author = {Kraft, Bodo and Wilhelms, Nils}, title = {Visual Knowledge Specification for Conceptual Design}, year = {2005}, abstract = {Proc. of the 2005 ASCE Intl. Conf. on Computing in Civil Engineering (ICCC 2005) eds. L. Soibelman und F. Pena-Mora, Seite 1-14, ASCE (CD-ROM), Cancun, Mexico, 2005 Current CAD tools are not able to support the fundamental conceptual design phase, and none of them provides consistency analyses of sketches produced by architects. To give architects a greater support at the conceptual design phase, we develop a CAD tool for conceptual design and a knowledge specification tool allowing the definition of conceptually relevant knowledge. The knowledge is specific to one class of buildings and can be reused. Based on a dynamic knowledge model, different types of design rules formalize the knowledge in a graph-based realization. An expressive visual language provides a user-friendly, human readable representation. Finally, consistency analyses enable conceptual designs to be checked against this defined knowledge. In this paper we concentrate on the knowledge specification part of our project.}, subject = {CAD}, language = {en} } @inproceedings{KraftWilhelms2004, author = {Kraft, Bodo and Wilhelms, N.}, title = {Interactive distributed knowledge support for conceptual building design}, isbn = {3-86068-213-X}, year = {2004}, abstract = {In: Net-distributed Co-operation : Xth International Conference on Computing in Civil and Building Engineering, Weimar, June 02 - 04, 2004 ; proceedings / [ed. by Karl Beuke ...] . - Weimar: Bauhaus-Univ. Weimar 2004. - 1. Aufl. . Seite 1-14 ISBN 3-86068-213-X International Conference on Computing in Civil and Building Engineering <10, 2004, Weimar> Summary In our project, we develop new tools for the conceptual design phase. During conceptual design, the coarse functionality and organization of a building is more important than a detailed worked out construction. We identify two roles, first the knowledge engineer who is responsible for knowledge definition and maintenance; second the architect who elaborates the conceptual de-sign. The tool for the knowledge engineer is based on graph technology, it is specified using PROGRES and the UPGRADE framework. The tools for the architect are integrated to the in-dustrial CAD tool ArchiCAD. Consistency between knowledge and conceptual design is en-sured by the constraint checker, another extension to ArchiCAD.}, subject = {CAD}, language = {en} } @inproceedings{KraftSchneider2005, author = {Kraft, Bodo and Schneider, Gerd}, title = {Semantic Roomobjects for Conceptual Design Support : A Knowledge-based Approach}, isbn = {978-1-4020-3460-2}, year = {2005}, abstract = {In: Computer Aided Architectural Design Futures 2005 2005, Part 4, 207-216, DOI: http://dx.doi.org/10.1007/1-4020-3698-1_19 The conceptual design at the beginning of the building construction process is essential for the success of a building project. Even if some CAD tools allow elaborating conceptual sketches, they rather focus on the shape of the building elements and not on their functionality. We introduce semantic roomobjects and roomlinks, by way of example to the CAD tool ArchiCAD. These extensions provide a basis for specifying the organisation and functionality of a building and free architects being forced to directly produce detailed constructive sketches. Furthermore, we introduce consistency analyses of the conceptual sketch, based on an ontology containing conceptual relevant knowledge, specific to one class of buildings.}, subject = {CAD}, language = {en} } @inproceedings{KraftRetkowitz2006, author = {Kraft, Bodo and Retkowitz, Daniel}, title = {Rule-Dependencies for Visual Knowledge Specification in Conceptual Design}, year = {2006}, abstract = {In: Proc. of the 11th Intl. Conf. on Computing in Civil and Building Engineering (ICCCBE-XI) ed. Hugues Rivard, Montreal, Canada, Seite 1-12, ACSE (CD-ROM), 2006 Currently, the conceptual design phase is not adequately supported by any CAD tool. Neither the support while elaborating conceptual sketches, nor the automatic proof of correctness with respect to effective restrictions is currently provided by any commercial tool. To enable domain experts to store the common as well as their personal domain knowledge, we develop a visual language for knowledge formalization. In this paper, a major extension to the already existing concepts is introduced. The possibility to define rule dependencies extends the expressiveness of the knowledge definition language and contributes to the usability of our approach.}, subject = {CAD}, language = {en} } @inproceedings{KraftNagl2003, author = {Kraft, Bodo and Nagl, Manfred}, title = {Semantic tool support for conceptual design}, year = {2003}, abstract = {ITCE-2003 - 4th Joint Symposium on Information Technology in Civil Engineering ed Flood, I., Seite 1-12, ASCE (CD-ROM), Nashville, USA In this paper we discussed graph based tools to support architects during the conceptual design phase. Conceptual Design is defined before constructive design; the used concepts are more abstract. We develop two graph based approaches, a topdown using the graph rewriting system PROGRES and a more industrially oriented approach, where we extend the CAD system ArchiCAD. In both approaches, knowledge can be defined by a knowledge engineer, in the top-down approach in the domain model graph, in the bottom-up approach in the in an XML file. The defined knowledge is used to incrementally check the sketch and to inform the architect about violations of the defined knowledge. Our goal is to discover design error as soon as possible and to support the architect to design buildings with consideration of conceptual knowledge.}, subject = {CAD}, language = {en} } @inproceedings{KraftMeyerNagl2002, author = {Kraft, Bodo and Meyer, Oliver and Nagl, Manfred}, title = {Graph technology support for conceptual design in civil engineering}, isbn = {3-18-318004-9}, year = {2002}, abstract = {In: Advances in intelligent computing in engineering : proceedings of the 9.International EG-ICE Workshop ; Darmstadt, (01 - 03 August) 2002 / Martina Schnellenbach-Held ... (eds.) . - D{\"u}sseldorf: VDI-Verl., 2002 .- Fortschritt-Berichte VDI, Reihe 4, Bauingenieurwesen ; 180 ; S. 1-35 The paper describes a novel way to support conceptual design in civil engineering. The designer uses semantical tools guaranteeing certain internal structures of the design result but also the fulfillment of various constraints. Two different approaches and corresponding tools are discussed: (a) Visually specified tools with automatic code generation to determine a design structure as well as fixing various constraints a design has to obey. These tools are also valuable for design knowledge specialist. (b) Extensions of existing CAD tools to provide semantical knowledge to be used by an architect. It is sketched how these different tools can be combined in the future. The main part of the paper discusses the concepts and realization of two prototypes following the two above approaches. The paper especially discusses that specific graphs and the specification of their structure are useful for both tool realization projects.}, subject = {CAD}, language = {en} } @inproceedings{Kraft2004, author = {Kraft, Bodo}, title = {Conceptual design tools for civil engineering}, year = {2004}, abstract = {Applications of Graph Transformations with Industrial Relevance Lecture Notes in Computer Science, 2004, Volume 3062/2004, 434-439, DOI: http://dx.doi.org/10.1007/978-3-540-25959-6_33 This paper gives a brief overview of the tools we have developed to support conceptual design in civil engineering. Based on the UPGRADE framework, two applications, one for the knowledge engineer and another for architects allow to store domain specific knowledge and to use this knowledge during conceptual design. Consistency analyses check the design against the defined knowledge and inform the architect if rules are violated.}, subject = {CAD}, language = {en} }