@inproceedings{ZingsheimGrimmerOrtneretal.2019, author = {Zingsheim, Jonas and Grimmer, Timo and Ortner, Marion and Schmaderer, Christoph and Hauser, Christine and Kotliar, Konstantin}, title = {Recognition of subjects with mild cognitive impairment (MCI) by the use of retinal arterial vessels.}, series = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, booktitle = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, editor = {Staat, Manfred and Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-22-6}, doi = {10.17185/duepublico/48750}, pages = {36 -- 37}, year = {2019}, language = {en} } @inproceedings{WaldmannVeraDachwaldetal.2018, author = {Waldmann, Christoph and Vera, Jean-Pierre de and Dachwald, Bernd and Strasdeit, Henry and Sohl, Frank and Hanff, Hendrik and Kowalski, Julia and Heinen, Dirk and Macht, Sabine and Bestmann, Ulf and Meckel, Sebastian and Hildebrandt, Marc and Funke, Oliver and Gehrt, Jan-J{\"o}ran}, title = {Search for life in ice-covered oceans and lakes beyond Earth}, series = {2018 IEEE/OES Autonomous Underwater Vehicle Workshop, Proceedings November 2018, Article number 8729761}, booktitle = {2018 IEEE/OES Autonomous Underwater Vehicle Workshop, Proceedings November 2018, Article number 8729761}, doi = {10.1109/AUV.2018.8729761}, year = {2018}, abstract = {The quest for life on other planets is closely connected with the search for water in liquid state. Recent discoveries of deep oceans on icy moons like Europa and Enceladus have spurred an intensive discussion about how these waters can be accessed. The challenge of this endeavor lies in the unforeseeable requirements on instrumental characteristics both with respect to the scientific and technical methods. The TRIPLE/nanoAUV initiative is aiming at developing a mission concept for exploring exo-oceans and demonstrating the achievements in an earth-analogue context, exploring the ocean under the ice shield of Antarctica and lakes like Dome-C on the Antarctic continent.}, language = {en} } @inproceedings{VoronkovaBauerKotliar2014, author = {Voronkova, Eva B. and Bauer, Svetlana M. and Kotliar, Konstantin}, title = {Computer simulation of the cornea-scleral shell as applied to pressure-volume relationship in the human eye}, series = {2014 International Conference on Computer Technologies in Physical and Engineering Applications : ICCTPEA 2014 : proceedings : June 30 2014-July 4 2014, St. Petersburg}, booktitle = {2014 International Conference on Computer Technologies in Physical and Engineering Applications : ICCTPEA 2014 : proceedings : June 30 2014-July 4 2014, St. Petersburg}, organization = {Institute of Electrical and Electronics Engineers}, isbn = {978-1-4799-5315-8}, pages = {204 -- 205}, year = {2014}, language = {en} } @inproceedings{TranStaatKreissig2007, author = {Tran, Thanh Ngoc and Staat, Manfred and Kreißig, R.}, title = {Calculation of load carrying capacity of shell structures with elasto-plastic material by direct methods}, year = {2007}, abstract = {Proceedings of the International Conference on Material Theory and Nonlinear Dynamics. MatDyn. Hanoi, Vietnam, Sept. 24-26, 2007, 8 p. In this paper, a method is introduced to determine the limit load of general shells using the finite element method. The method is based on an upper bound limit and shakedown analysis with elastic-perfectly plastic material model. A non-linear constrained optimisation problem is solved by using Newton's method in conjunction with a penalty method and the Lagrangean dual method. Numerical investigation of a pipe bend subjected to bending moments proves the effectiveness of the algorithm.}, subject = {Finite-Elemente-Methode}, language = {en} } @inproceedings{TranStaatKreissig2007, author = {Tran, Thanh Ngoc and Staat, Manfred and Kreißig, R.}, title = {Finite element shakedown and limit reliability analysis of thin shells}, year = {2007}, abstract = {A procedure for the evaluation of the failure probability of elastic-plastic thin shell structures is presented. The procedure involves a deterministic limit and shakedown analysis for each probabilistic iteration which is based on the kinematical approach and the use the exact Ilyushin yield surface. Based on a direct definition of the limit state function, the non-linear problems may be efficiently solved by using the First and Second Order Reliabiblity Methods (Form/SORM). This direct approach reduces considerably the necessary knowledge of uncertain technological input data, computing costs and the numerical error. In: Computational plasticity / ed. by Eugenio Onate. Dordrecht: Springer 2007. VII, 265 S. (Computational Methods in Applied Sciences ; 7) (COMPLAS IX. Part 1 . International Center for Numerical Methods in Engineering (CIMNE)). ISBN 978-1-402-06576-7 S. 186-189}, subject = {Finite-Elemente-Methode}, language = {en} } @inproceedings{TranStaat2012, author = {Tran, Thanh Ngoc and Staat, Manfred}, title = {A primal-dual shakedown analysis of 3D structures using the face-based smoothed finite element method}, series = {Proceedings European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012)}, booktitle = {Proceedings European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012)}, editor = {Eberhardsteiner, J.}, year = {2012}, language = {en} } @inproceedings{TranStaat2014, author = {Tran, Thanh Ngoc and Staat, Manfred}, title = {Uncertain multimode failure and limit analysis of shells}, series = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20-25, 2014, Barcelona}, booktitle = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20-25, 2014, Barcelona}, editor = {Onate, E.}, organization = {World Congress on Computational Mechanics <11, 2014, Barcelona>}, pages = {1 -- 12}, year = {2014}, language = {en} } @inproceedings{TranPhamStaat2008, author = {Tran, Thanh Ngoc and Pham, Phu Tinh and Staat, Manfred}, title = {Reliability analysis of shells based on direct plasticity methods}, year = {2008}, abstract = {Abstracts der CD-Rom Proceedings of the 8th World Congress on Computational Mechanics (WCCM8) and 5th Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008) 30.06. - 04.07.2008 Venedig, Italien. 2 Seiten Zusammenfassung der Autoren mit graph. Darst. und Literaturverzeichnis}, subject = {Finite-Elemente-Methode}, language = {en} } @inproceedings{TranNovacekTolbaetal.2011, author = {Tran, Thanh Ngoc and Novacek, V. and Tolba, R. and Klinge, U. and Turquier, F. and Staat, Manfred}, title = {Experimental and Computational approach to study colorectal anastomosis. ISB2011, Proceedings of the XXIII Congress of the International Society of Biomechanics, Brussels, Belgium, July 3-7, 2011}, year = {2011}, abstract = {Summary: This paper presents a methodology to study and understand the mechanics of stapled anastomotic behaviors by combining empirical experimentation and finite element analysis. Performance of stapled anastomosis is studied in terms of leakage and numerical results which are compared to in vitro experiments performed on fresh porcine tissue. Results suggest that leaks occur between the tissue and staple legs penetrating through the tissue.}, subject = {Anastomose}, language = {en} } @inproceedings{TranTrinhDaoetal.2022, author = {Tran, Ngoc Trinh and Trinh, Tu Luc and Dao, Ngoc Tien and Giap, Van Tan and Truong, Manh Khuyen and Dinh, Thuy Ha and Staat, Manfred}, title = {Limit and shakedown analysis of structures under random strength}, series = {Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training, Hanoi, December 2-3, 2022}, booktitle = {Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training, Hanoi, December 2-3, 2022}, publisher = {Nha xuat ban Khoa hoc tu nhien va Cong nghe (Verlag Naturwissenschaft und Technik)}, address = {Hanoi}, isbn = {978-604-357-084-7}, pages = {510 -- 518}, year = {2022}, abstract = {Direct methods comprising limit and shakedown analysis is a branch of computational mechanics. It plays a significant role in mechanical and civil engineering design. The concept of direct method aims to determinate the ultimate load bearing capacity of structures beyond the elastic range. For practical problems, the direct methods lead to nonlinear convex optimization problems with a large number of variables and onstraints. If strength and loading are random quantities, the problem of shakedown analysis is considered as stochastic programming. This paper presents a method so called chance constrained programming, an effective method of stochastic programming, to solve shakedown analysis problem under random condition of strength. In this our investigation, the loading is deterministic, the strength is distributed as normal or lognormal variables.}, language = {en} }