@inproceedings{ŠakićMilijašMarinkovićetal.2021, author = {Šakić, Bogdan and Milijaš, Aleksa and Marinković, Marko and Butenweg, Christoph and Klinkel, Sven}, title = {Influence of prior in-plane damage on the out-of-plane response of non-load bearing unreinforced masonry walls under seismic load}, series = {8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering}, booktitle = {8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering}, editor = {Papadrakakis, Manolis and Fragiadakis, Michalis}, publisher = {National Technical University of Athens}, address = {Athen}, isbn = {9786188507258}, issn = {2623-3347}, doi = {10.7712/120121.8527.18913}, pages = {808 -- 828}, year = {2021}, abstract = {Reinforced concrete frames with masonry infill walls are popular form of construction all over the world as well in seismic regions. While severe earthquakes can cause high level of damage of both reinforced concrete and masonry infills, earthquakes of lower to medium intensity some-times can cause significant level of damage of masonry infill walls. Especially important is the level of damage of face loaded infill masonry walls (out-of-plane direction) as out-of-plane load cannot only bring high level of damage to the wall, it can also be life-threating for the people near the wall. The response in out-of-plane direction directly depends on the prior in-plane damage, as previous investigation shown that it decreases resistance capacity of the in-fills. Behaviour of infill masonry walls with and without prior in-plane load is investigated in the experimental campaign and the results are presented in this paper. These results are later compared with analytical approaches for the out-of-plane resistance from the literature. Conclusions based on the experimental campaign on the influence of prior in-plane damage on the out-of-plane response of infill walls are compared with the conclusions from other authors who investigated the same problematic.}, language = {en} } @inproceedings{ZischankKernFrentzeletal.2000, author = {Zischank, Wolfgang J. and Kern, Alexander and Frentzel, Ralf and Heidler, Fridolin and Seevers, M.}, title = {Assessment of the lightning transient coupling to control cables interconnecting structures in large industrial facilities and power plants}, year = {2000}, abstract = {Large industrial facilities and power plants often require a huge number fo information and control cables between the differnet structures. These I\&C-cables can be routed in reinforced concrete cable ducts or in isolated buried cable runs. KTA 2206 is the German lightning protection standard for nuclear power plants. During the last several years considerable effort has been made to revise this standard. Despite the well established principles and design guidelines for the construction of the lightning protection system, this standard puts special emphasis on the coupling of transient overvoltages to I\&C-cables.}, language = {en} } @inproceedings{ZischankHeidlerWiesingeretal.2004, author = {Zischank, Wolfgang J. and Heidler, Fridolin and Wiesinger, J. and Stimper, K. and Kern, Alexander and Seevers, M.}, title = {Magnetic Fields and Induced Voltages inside LPZ 1 Measured at a 1:6 Scale Model Building}, year = {2004}, abstract = {Laborexperimente zu Blitzschutzzonen in Stahlbetongeb{\"a}uden anhand eines Modells im Maßstab 1:6}, language = {en} } @inproceedings{ZischankHeidlerKernetal.2002, author = {Zischank, Wolfgang J. and Heidler, Fridolin and Kern, Alexander and Metwally, I. A. and Wiesinger, J. and Seevers, M.}, title = {Laboratory simulation of direct lightning strokes to a modelled building - measurement of magnetic fields and induced voltages}, year = {2002}, abstract = {In IEC 61312-2 equations for the assessment of the magnetic fields inside structures due to a direct lightning strike are given. These equations are based on computer simulations for shields consisting of a single-layer steel grid of a given mesh width. Real constructions, however, contain at least two layers of reinforcement steel grids. The objective of this study was to experimentally determine the additional shielding effectiveness of a second reinforcement layer compared to a single-layer grid. To this end, simulated structures were set up in the high current laboratory. The structures consisted of cubic cages of 2 m side length with one or with two reinforcement grids, respectively. The structures were exposed to direct lightning currents representing the variety of anticipated lightning current waveforms. The magnetic fields and their derivatives at several positions inside the structure as well as the voltage between "floor" and "roof" in the center were determined for different current injection points. From these data the improvement of the shielding caused by a second reinforcement layer is derived.}, language = {en} } @inproceedings{ZieglerSchuellerMottaghy2013, author = {Ziegler, M. and Sch{\"u}ller, R. and Mottaghy, Darius}, title = {Numerical simulation of energy consumption of artificial ground freezing applications subject to water seepage}, series = {Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris 2013}, booktitle = {Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris 2013}, pages = {2985 -- 2988}, year = {2013}, language = {en} } @inproceedings{ZahraPhaniSrujanCaminosetal.2022, author = {Zahra, Mahdi and Phani Srujan, Merige and Caminos, Ricardo Alexander Chico and Schmitz, Pascal and Herrmann, Ulf and Teixeira Boura, Cristiano Jos{\´e} and Schmitz, Mark and Gielen, Hans and Gedle, Yibekal and Dersch, J{\"u}rgen}, title = {Modeling the thermal behavior of solar salt in electrical resistance heaters for the application in PV-CSP hybrid power plants}, series = {SOLARPACES 2020}, booktitle = {SOLARPACES 2020}, number = {2445 / 1}, publisher = {AIP conference proceedings / American Institute of Physics}, address = {Melville, NY}, isbn = {978-0-7354-4195-8}, issn = {1551-7616 (online)}, doi = {10.1063/5.0086268}, pages = {9 Seiten}, year = {2022}, abstract = {Concentrated Solar Power (CSP) systems are able to store energy cost-effectively in their integrated thermal energy storage (TES). By intelligently combining Photovoltaics (PV) systems with CSP, a further cost reduction of solar power plants is expected, as well as an increase in dispatchability and flexibility of power generation. PV-powered Resistance Heaters (RH) can be deployed to raise the temperature of the molten salt hot storage from 385 °C up to 565 °C in a Parabolic Trough Collector (PTC) plant. To avoid freezing and decomposition of molten salt, the temperature distribution in the electrical resistance heater is investigated in the present study. For this purpose, a RH has been modeled and CFD simulations have been performed. The simulation results show that the hottest regions occur on the electric rod surface behind the last baffle. A technical optimization was performed by adjusting three parameters: Shell-baffle clearance, electric rod-baffle clearance and number of baffles. After the technical optimization was carried out, the temperature difference between the maximum temperature and the average outlet temperature of the salt is within the acceptable limits, thus critical salt decomposition has been avoided. Additionally, the CFD simulations results were analyzed and compared with results obtained with a one-dimensional model in Modelica.}, language = {en} } @inproceedings{WetterKern2014, author = {Wetter, Martin and Kern, Alexander}, title = {Number of lightning strikes to tall structures - comparison of calculations and measurements using a modern lightning monitoring system}, series = {2014 International Conference on Lightning Protection (ICLP), Shanghai, China}, booktitle = {2014 International Conference on Lightning Protection (ICLP), Shanghai, China}, organization = {International Conference on Lightning Protection <2014, Shanghai>}, pages = {1 -- 7}, year = {2014}, language = {en} } @inproceedings{WagnerNohButenwegetal.2002, author = {Wagner, R. and Noh, S.-Y. and Butenweg, Christoph and Meskouris, Konstantin}, title = {Seismic excited granular material silos}, series = {Structural dynamics - EURODYN 2002 : proceedings of the 4th [i.e. 5th] International Conference on Structural Dynamics, Munich, Germany, 2 - 5 September 2002 / ed. by H. Grundmann ...}, booktitle = {Structural dynamics - EURODYN 2002 : proceedings of the 4th [i.e. 5th] International Conference on Structural Dynamics, Munich, Germany, 2 - 5 September 2002 / ed. by H. Grundmann ...}, publisher = {Balkema}, address = {Lisse}, organization = {European Conference on Structural Dynamics, EURODYN <5, 2002, M{\"u}nchen>}, isbn = {90-5809-511-8}, pages = {253 -- 258}, year = {2002}, language = {en} } @inproceedings{TomićPennaDeJongetal.2020, author = {Tomić, Igor and Penna, Andrea and DeJong, Matthew and Butenweg, Christoph and Correia, Ant{\´o}nio A. and Candeias, Paulo X. and Senaldi, Ilaria and Guerrini, Gabriele and Malomo, Daniele and Beyer, Katrin}, title = {Seismic testing of adjacent interacting masonry structures}, series = {12th International Conference on Structural Analysis of Historical Constructions (SAHC 2020)}, booktitle = {12th International Conference on Structural Analysis of Historical Constructions (SAHC 2020)}, doi = {10.23967/sahc.2021.234}, pages = {1 -- 12}, year = {2020}, abstract = {In many historical centres in Europe, stone masonry buildings are part of building aggregates, which developed when the layout of the city or village was densified. In these aggregates, adjacent buildings share structural walls to support floors and roofs. Meanwhile, the masonry walls of the fa{\c{c}}ades of adjacent buildings are often connected by dry joints since adjacent buildings were constructed at different times. Observations after for example the recent Central Italy earthquakes showed that the dry joints between the building units were often the first elements to be damaged. As a result, the joints opened up leading to pounding between the building units and a complicated interaction at floor and roof beam supports. The analysis of such building aggregates is very challenging and modelling guidelines do not exist. Advances in the development of analysis methods have been impeded by the lack of experimental data on the seismic response of such aggregates. The objective of the project AIMS (Seismic Testing of Adjacent Interacting Masonry Structures), included in the H2020 project SERA, is to provide such experimental data by testing an aggregate of two buildings under two horizontal components of dynamic excitation. The test unit is built at half-scale, with a two-storey building and a one-storey building. The buildings share one common wall while the fa{\c{c}}ade walls are connected by dry joints. The floors are at different heights leading to a complex dynamic response of this smallest possible building aggregate. The shake table test is conducted at the LNEC seismic testing facility. The testing sequence comprises four levels of shaking: 25\%, 50\%, 75\% and 100\% of nominal shaking table capacity. Extensive instrumentation, including accelerometers, displacement transducers and optical measurement systems, provides detailed information on the building aggregate response. Special attention is paid to the interface opening, the globa}, language = {en} } @inproceedings{TomicPennaDeJongetal.2020, author = {Tomic, Igor and Penna, Andrea and DeJong, Matthew and Butenweg, Christoph and Senaldi, Ilaria and Guerrini, Gabriele and Malomo, Daniele and Beyer, Katrin}, title = {Blind predictions of shake table testing of aggregate masonry buildings}, series = {17th World Conference on Earthquake Engineering, Sendai, Japan, September 27 to October 2, 2021.}, booktitle = {17th World Conference on Earthquake Engineering, Sendai, Japan, September 27 to October 2, 2021.}, year = {2020}, abstract = {In many historical centers in Europe, stone masonry is part of building aggregates, which developed when the layout of the city or village was densified. The analysis of such building aggregates is very challenging and modelling guidelines missing. Advances in the development of analysis methods have been impeded by the lack of experimental data on the seismic response of such aggregates. The SERA project AIMS (Seismic Testing of Adjacent Interacting Masonry Structures) provides such experimental data by testing an aggregate of two buildings under two horizontal components of dynamic excitation. With the aim to advance the modelling of unreinforced masonry aggregates, a blind prediction competition is organized before the experimental campaign. Each group has been provided a complete set of construction drawings, material properties, testing sequence and the list of measurements to be reported. The applied modelling approaches span from equivalent frame models to Finite Element models using shell elements and discrete element models with solid elements. This paper compares the first entries, regarding the modelling approaches, results in terms of base shear, roof displacements, interface openings, and the failure modes.}, language = {en} }