@article{OehlschlaegerPesOsenetal.2006, author = {{\"O}hlschl{\"a}ger, Peter and Pes, Michaela and Osen, Wolfram and D{\"u}rst, Matthias}, title = {An improved rearranged Human Papillomavirus Type 16 E7 DNA vaccine candidate (HPV-16 E7SH) induces an E7 wildtype-specific T cell response / {\"O}hlschl{\"a}ger, Peter ; Pes, Michaela ; Osen, Wolfram ; D{\"u}rst, Matthias ; Schneider, Achim ; Gissmann, Lutz ; Kaufman}, series = {Vaccine. 24 (2006), H. 15}, journal = {Vaccine. 24 (2006), H. 15}, isbn = {0264-410X}, pages = {2880 -- 2893}, year = {2006}, language = {en} } @article{YoshinobuMoritzFingeretal.2006, author = {Yoshinobu, Tatsuo and Moritz, Werner and Finger, Friedhelm and Sch{\"o}ning, Michael Josef}, title = {Application of thin-film amorphous silicon to chemical imaging}, series = {Nanostructured materials and hybrid composites for gas sensors and biomedical applications : symposium held April 18-20, 2006, San Francisco , California, U.S.A.}, journal = {Nanostructured materials and hybrid composites for gas sensors and biomedical applications : symposium held April 18-20, 2006, San Francisco , California, U.S.A.}, number = {Paper 0910-A-20-01}, editor = {Comini, Elisabetta}, isbn = {9781558998711}, pages = {1 -- 10}, year = {2006}, language = {en} } @article{WeberMoRamakrishna2006, author = {Weber, Hans-Joachim and Mo, Xiumei and Ramakrishna, S.}, title = {PCL-PGLA composite tubular scaffold preparation and biocompatibility investigation / X. Mo, H.-J. Weber, S. Ramakrishna}, series = {The International journal of artificial organs. 29 (2006), H. 8}, journal = {The International journal of artificial organs. 29 (2006), H. 8}, publisher = {-}, pages = {790 -- 799}, year = {2006}, language = {en} } @inproceedings{WagnerSchoening2006, author = {Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Preface of the Special Issue of I3S 2005 in J{\"u}lich (Germany)}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1365}, year = {2006}, abstract = {International Symposium on Sensor Science, I3S 2005 <3; 2005; Juelich, Germany> In: Sensors 2006, 6, 260-261 ISSN 1424-8220}, subject = {Biosensor}, language = {en} } @article{WagnerRaoKloocketal.2006, author = {Wagner, Torsten and Rao, C. and Kloock, Joachim P. and Yoshinobu, T. and Otto, R. and Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {"LAPS Card"—A novel chip card-based light-addressable potentiometric sensor (LAPS)}, series = {Sensors and Actuators B: Chemical. 118 (2006), H. 1-2}, journal = {Sensors and Actuators B: Chemical. 118 (2006), H. 1-2}, isbn = {0925-4005}, pages = {33 -- 40}, year = {2006}, language = {en} } @inproceedings{WagnerKohlFroebaetal.2006, author = {Wagner, Thorsten and Kohl, Claus-Dieter and Fr{\"o}ba, Michael and Tiemann, Michael}, title = {Gas sensing properties of ordered mesoporous SnO2}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1422}, year = {2006}, abstract = {We report on the synthesis and CO gas-sensing properties of mesoporous tin(IV) oxides (SnO2). For the synthesis cetyltrimethylammonium bromide (CTABr) was used as a structure-directing agent; the resulting SnO2 powders were applied as films to commercially available sensor substrates by drop coating. Nitrogen physisorption shows specific surface areas up to 160 m2·g-1 and mean pore diameters of about 4 nm, as verified by TEM. The film conductance was measured in dependence on the CO concentration in humid synthetic air at a constant temperature of 300 °C. The sensors show a high sensitivity at low CO concentrations and turn out to be largely insensitive towards changes in the relative humidity. We compare the materials with commercially available SnO2-based sensors.}, subject = {Biosensor}, language = {en} } @article{VorstFerreinLakemeyer2006, author = {Vorst, Phillip and Ferrein, Alexander and Lakemeyer, Gerhard}, title = {AllemaniACs3D team description}, pages = {1 -- 6}, year = {2006}, language = {en} } @inproceedings{VedralWollertBudaetal.2006, author = {Vedral, Andreas and Wollert, J{\"o}rg and Buda, A. and Altrock, R.}, title = {The capability of bluetooth for real-time transmission in automation}, series = {Proceedings of the IASTED International Conference on Networks and Communication Systems 2006 : March 29 - 31, 2006, Chiang Mai, Thailand}, booktitle = {Proceedings of the IASTED International Conference on Networks and Communication Systems 2006 : March 29 - 31, 2006, Chiang Mai, Thailand}, publisher = {Acta Pr.}, address = {Anaheim, Calif.}, organization = {International Association of Science and Technology for Development}, pages = {168 -- 175}, year = {2006}, language = {en} } @inproceedings{UibelBlass2006, author = {Uibel, Thomas and Blaß, Hans Joachim}, title = {Load Carrying Capacity of Joints with Dowel Type Fasteners in Solid Wood Panels}, series = {Proceedings. CIB-W18 Meeting 2006, Florence, Italy 2006}, booktitle = {Proceedings. CIB-W18 Meeting 2006, Florence, Italy 2006}, issn = {0945-6996}, pages = {1 -- 10}, year = {2006}, language = {en} } @inproceedings{TymeckiGlabKoncki2006, author = {Tymecki, Lukasz and Glab, Stanislaw and Koncki, Robert}, title = {Miniaturized, planar ion-selective electrodes fabricated by means of thick-film technology}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1506}, year = {2006}, abstract = {Various planar technologies are employed for developing solid-state sensors having low cost, small size and high reproducibility; thin- and thick-film technologies are most suitable for such productions. Screen-printing is especially suitable due to its simplicity, low-cost, high reproducibility and efficiency in large-scale production. This technology enables the deposition of a thick layer and allows precise pattern control. Moreover, this is a highly economic technology, saving large amounts of the used inks. In the course of repetitions of the film-deposition procedure there is no waste of material due to additivity of this thick-film technology. Finally, the thick films can be easily and quickly deposited on inexpensive substrates. In this contribution, thick-film ion-selective electrodes based on ionophores as well as crystalline ion-selective materials dedicated for potentiometric measurements are demonstrated. Analytical parameters of these sensors are comparable with those reported for conventional potentiometric electrodes. All mentioned thick-film strip electrodes have been totally fabricated in only one, fully automated thickfilm technology, without any additional manual, chemical or electrochemical steps. In all cases simple, inexpensive, commercially available materials, i.e. flexible, plastic substrates and easily cured polymer-based pastes were used.}, subject = {Biosensor}, language = {en} }