@article{KowalskiLinderZierkeetal.2016, author = {Kowalski, Julia and Linder, Peter and Zierke, S. and Wulfen, B. van and Clemens, J. and Konstantinidis, K. and Ameres, G. and Hoffmann, R. and Mikucki, J. and Tulaczyk, S. and Funke, O. and Blandfort, D. and Espe, Clemens and Feldmann, Marco and Francke, Gero and Hiecker, S. and Plescher, Engelbert and Sch{\"o}ngarth, Sarah and Dachwald, Bernd and Digel, Ilya and Artmann, Gerhard and Eliseev, D. and Heinen, D. and Scholz, F. and Wiebusch, C. and Macht, S. and Bestmann, U. and Reineking, T. and Zetzsche, C. and Schill, K. and F{\"o}rstner, R. and Niedermeier, H. and Szumski, A. and Eissfeller, B. and Naumann, U. and Helbing, K.}, title = {Navigation technology for exploration of glacier ice with maneuverable melting probes}, series = {Cold Regions Science and Technology}, journal = {Cold Regions Science and Technology}, number = {123}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0165-232X}, doi = {10.1016/j.coldregions.2015.11.006}, pages = {53 -- 70}, year = {2016}, abstract = {The Saturnian moon Enceladus with its extensive water bodies underneath a thick ice sheet cover is a potential candidate for extraterrestrial life. Direct exploration of such extraterrestrial aquatic ecosystems requires advanced access and sampling technologies with a high level of autonomy. A new technological approach has been developed as part of the collaborative research project Enceladus Explorer (EnEx). The concept is based upon a minimally invasive melting probe called the IceMole. The force-regulated, heater-controlled IceMole is able to travel along a curved trajectory as well as upwards. Hence, it allows maneuvers which may be necessary for obstacle avoidance or target selection. Maneuverability, however, necessitates a sophisticated on-board navigation system capable of autonomous operations. The development of such a navigational system has been the focal part of the EnEx project. The original IceMole has been further developed to include relative positioning based on in-ice attitude determination, acoustic positioning, ultrasonic obstacle and target detection integrated through a high-level sensor fusion. This paper describes the EnEx technology and discusses implications for an actual extraterrestrial mission concept.}, language = {en} } @article{ChristenKowalskiBartelt2010, author = {Christen, Marc and Kowalski, Julia and Bartelt, Perry}, title = {RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain}, series = {Cold Regions Science and Technology}, volume = {63}, journal = {Cold Regions Science and Technology}, number = {1-2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1872-7441}, doi = {10.1016/j.coldregions.2010.04.005}, pages = {1 -- 14}, year = {2010}, abstract = {Numerical avalanche dynamics models have become an essential part of snow engineering. Coupled with field observations and historical records, they are especially helpful in understanding avalanche flow in complex terrain. However, their application poses several new challenges to avalanche engineers. A detailed understanding of the avalanche phenomena is required to construct hazard scenarios which involve the careful specification of initial conditions (release zone location and dimensions) and definition of appropriate friction parameters. The interpretation of simulation results requires an understanding of the numerical solution schemes and easy to use visualization tools. We discuss these problems by presenting the computer model RAMMS, which was specially designed by the SLF as a practical tool for avalanche engineers. RAMMS solves the depth-averaged equations governing avalanche flow with accurate second-order numerical solution schemes. The model allows the specification of multiple release zones in three-dimensional terrain. Snow cover entrainment is considered. Furthermore, two different flow rheologies can be applied: the standard Voellmy-Salm (VS) approach or a random kinetic energy (RKE) model, which accounts for the random motion and inelastic interaction between snow granules. We present the governing differential equations, highlight some of the input and output features of RAMMS and then apply the models with entrainment to simulate two well-documented avalanche events recorded at the Vall{\´e}e de la Sionne test site.}, language = {en} } @article{BuehlerChristenKowalskietal.2011, author = {B{\"u}hler, Yves and Christen, Marc and Kowalski, Julia and Bartelt, Perry}, title = {Sensitivity of snow avalanche simulations to digital elevation model quality and resolution}, series = {Annals of Glaciology}, volume = {52}, journal = {Annals of Glaciology}, number = {58}, publisher = {Cambridge University Press}, address = {Cambridge}, isbn = {1727-5644}, pages = {72 -- 80}, year = {2011}, abstract = {Digital elevation models (DEMs), represent the three-dimensional terrain and are the basic input for numerical snow avalanche dynamics simulations. DEMs can be acquired using topographic maps or remote-sensing technologies, such as photogrammetry or lidar. Depending on the acquisition technique, different spatial resolutions and qualities are achieved. However, there is a lack of studies that investigate the sensitivity of snow avalanche simulation algorithms to the quality and resolution of DEMs. Here, we perform calculations using the numerical avalance dynamics model RAMMS, varying the quality and spatial resolution of the underlying DEMs, while holding the simulation parameters constant. We study both channelized and open-terrain avalanche tracks with variable roughness. To quantify the variance of these simulations, we use well-documented large-scale avalanche events from Davos, Switzerland (winter 2007/08), and from our large-scale avalanche test site, Valĺee de la Sionne (winter 2005/06). We find that the DEM resolution and quality is critical for modeled flow paths, run-out distances, deposits, velocities and impact pressures. Although a spatial resolution of ~25 m is sufficient for large-scale avalanche modeling, the DEM datasets must be checked carefully for anomalies and artifacts before using them for dynamics calculations.}, language = {en} } @article{KowalskiMcElwaine2013, author = {Kowalski, Julia and McElwaine, Jim N.}, title = {Shallow two-component gravity-driven flows with vertical variation}, series = {Journal of Fluid Mechanics}, volume = {714}, journal = {Journal of Fluid Mechanics}, publisher = {Cambridge Univ. Press}, address = {Cambridge}, isbn = {0022-1120}, pages = {434 -- 462}, year = {2013}, language = {en} } @article{LyonsMikuckiGermanetal.2019, author = {Lyons, W. Berry and Mikucki, Jill A. and German, Laura A. and Welch, Kathleen A. and Welch, Susan A. and Gardener, Christopher B. and Tulaczyk, Slawek M. and Pettit, Erin C. and Kowalski, Julia and Dachwald, Bernd}, title = {The Geochemistry of Englacial Brine from Taylor Glacier, Antarctica}, series = {Journal of Geophysical Research: Biogeosciences}, journal = {Journal of Geophysical Research: Biogeosciences}, publisher = {Wiley}, address = {Hoboken}, issn = {2169-8961}, doi = {10.1029/2018JG004411}, year = {2019}, language = {en} } @article{FischerKowalskiPudasaini2012, author = {Fischer, Jan-Thomas and Kowalski, Julia and Pudasaini, Shiva P.}, title = {Topographic curvature effects in applied avalanche modelling}, series = {Cold Regions Science and Technology}, volume = {74-75}, journal = {Cold Regions Science and Technology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1872-7441}, doi = {10.1016/j.coldregions.2012.01.005}, pages = {21 -- 30}, year = {2012}, abstract = {This paper describes the implementation of topographic curvature effects within the RApid Mass MovementS (RAMMS) snow avalanche simulation toolbox. RAMMS is based on a model similar to shallow water equations with a Coulomb friction relation and the velocity dependent Voellmy drag. It is used for snow avalanche risk assessment in Switzerland. The snow avalanche simulation relies on back calculation of observed avalanches. The calibration of the friction parameters depends on characteristics of the avalanche track. The topographic curvature terms are not yet included in the above mentioned classical model. Here, we fundamentally improve this model by mathematically and physically including the topographic curvature effects. By decomposing the velocity dependent friction into a topography dependent term that accounts for a curvature enhancement in the Coulomb friction, and a topography independent contribution similar to the classical Voellmy drag, we construct a general curvature dependent frictional resistance, and thus propose new extended model equations. With three site-specific examples, we compare the apparent frictional resistance of the new approach, which includes topographic curvature effects, to the classical one. Our simulation results demonstrate substantial effects of the curvature on the flow dynamics e.g., the dynamic pressure distribution along the slope. The comparison of resistance coefficients between the two models demonstrates that the physically based extension presents an improvement to the classical approach. Furthermore a practical example highlights its influence on the pressure outline in the run out zone of the avalanche. Snow avalanche dynamics modeling natural terrain curvature centrifugal force friction coefficients.}, language = {en} } @article{GermanMikuckiWelchetal.2021, author = {German, Laura and Mikucki, Jill A. and Welch, Susan A. and Welch, Kathleen A. and Lutton, Anthony and Dachwald, Bernd and Kowalski, Julia and Heinen, Dirk and Feldmann, Marco and Francke, Gero and Espe, Clemens and Lyons, W. Berry}, title = {Validation of sampling antarctic subglacial hypersaline waters with an electrothermal ice melting probe (IceMole) for environmental analytical geochemistry}, series = {International Journal of Environmental Analytical Chemistry}, volume = {101}, journal = {International Journal of Environmental Analytical Chemistry}, number = {15}, publisher = {Taylor \& Francis}, address = {London}, issn = {0306-7319}, doi = {10.1080/03067319.2019.1704750}, pages = {2654 -- 2667}, year = {2021}, abstract = {Geochemical characterisation of hypersaline waters is difficult as high concentrations of salts hinder the analysis of constituents at low concentrations, such as trace metals, and the collection of samples for trace metal analysis in natural waters can be easily contaminated. This is particularly the case if samples are collected by non-conventional techniques such as those required for aquatic subglacial environments. In this paper we present the first analysis of a subglacial brine from Taylor Valley, (~ 78°S), Antarctica for the trace metals: Ba, Co, Mo, Rb, Sr, V, and U. Samples were collected englacially using an electrothermal melting probe called the IceMole. This probe uses differential heating of a copper head as well as the probe's sidewalls and an ice screw at the melting head to move through glacier ice. Detailed blanks, meltwater, and subglacial brine samples were collected to evaluate the impact of the IceMole and the borehole pump, the melting and collection process, filtration, and storage on the geochemistry of the samples collected by this device. Comparisons between melt water profiles through the glacier ice and blank analysis, with published studies on ice geochemistry, suggest the potential for minor contributions of some species Rb, As, Co, Mn, Ni, NH4+, and NO2-+NO3- from the IceMole. The ability to conduct detailed chemical analyses of subglacial fluids collected with melting probes is critical for the future exploration of the hundreds of deep subglacial lakes in Antarctica.}, language = {en} } @article{HeierliPurvesFelberetal.2004, author = {Heierli, Joachim and Purves, Ross S. and Felber, Andreas and Kowalski, Julia}, title = {Verification of nearest-neighbours interpretations in avalanche forecasting}, series = {Annals of Glaciology}, volume = {38}, journal = {Annals of Glaciology}, number = {1}, isbn = {1727-5644}, pages = {84 -- 88}, year = {2004}, abstract = {This paper examines the positive and negative aspects of a range of interpretations of nearest-neighbours models. Measures-oriented and distributionoriented verification methods are applied to categorial, probabilistic and descriptive interpretations of nearest neighbours used operationally in avalanche forecasting in Scotland and Switzerland. The dependence of skill and accuracy measures on base rate is illustrated. The purpose of the forecast and the definition of events are important variables in determining the quality of the forecast. A discussion of the application of different interpretations in operational avalanche forecasting is presented.}, language = {en} }