@inproceedings{ReisertGeisslerFloerkeetal.2012, author = {Reisert, Steffen and Geissler, H. and Fl{\"o}rke, R. and Weiler, C. and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Characterisation of aseptic sterilisation processes using an electronic nose}, series = {Nanoscale Science and Technology (NS\&T´12) : Proceedings Book Humboldt Kolleg ; Tunisia, 17-19 March, 2012}, booktitle = {Nanoscale Science and Technology (NS\&T´12) : Proceedings Book Humboldt Kolleg ; Tunisia, 17-19 March, 2012}, editor = {Abdelghani, Adnane and Sch{\"o}ning, Michael Josef}, pages = {45 -- 45}, year = {2012}, language = {en} } @article{KirchnerReisertPuetzetal.2012, author = {Kirchner, Patrick and Reisert, Steffen and P{\"u}tz, Patrick and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Characterisation of polymeric materials as passivation layer for calorimetric H2O2 gas sensors}, series = {Physica Status Solidi (a)}, volume = {209}, journal = {Physica Status Solidi (a)}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201100773}, pages = {859 -- 863}, year = {2012}, abstract = {Calorimetric gas sensors for monitoring the H₂O₂ concentration at elevated temperatures in industrial sterilisation processes have been presented in previous works. These sensors are built up in form of a differential set-up of a catalytically active and passive temperature-sensitive structure. Although, various types of catalytically active dispersions have been studied, the passivation layer has to be established and therefore, chemically as well as physically characterised. In the present work, fluorinated ethylene propylene (FEP), perfluoralkoxy (PFA) and epoxy-based SU-8 photoresist as temperature-stable polymeric materials have been investigated for sensor passivation in terms of their chemical inertness against H₂O₂, their hygroscopic properties as well as their morphology. The polymeric materials were deposited via spin-coating on the temperature-sensitive structure, wherein spin-coated FEP and PFA show slight agglomerates. However, they possess a low absorption of humidity due to their hydrophobic surface, whereas the SU-8 layer has a closed surface but shows a slightly higher absorption of water. All of them were inert against gaseous H₂O₂ during the characterisation in H₂O₂ atmosphere that demonstrates their suitability as passivation layer for calorimetric H₂O₂ gas sensors.}, language = {en} } @inproceedings{OertelBung2012, author = {Oertel, Mario and Bung, Daniel B.}, title = {Characteristics of cross-bar block ramp flows}, series = {Hydraulic structures into the 21st century : 4th IAHR International Symposium on Hydraulic Structures : 9.-11.2.2012, Porto}, booktitle = {Hydraulic structures into the 21st century : 4th IAHR International Symposium on Hydraulic Structures : 9.-11.2.2012, Porto}, organization = {International Symposium on Hydraulic Structures <4, 2012, Porto>}, isbn = {978-989-8509-01-7}, pages = {Elektronisch publiziert}, year = {2012}, language = {en} } @article{SchusserPoghossianBaeckeretal.2012, author = {Schusser, Sebastian and Poghossian, Arshak and B{\"a}cker, Matthias and Leinhos, Marcel and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Characterization of biodegradable polymers with capacitive field-effect sensors}, series = {Sensors and actuators B: Chemical}, volume = {187}, journal = {Sensors and actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2012.07.099}, pages = {2 -- 7}, year = {2012}, abstract = {In vitro studies of the degradation kinetic of biopolymers are essential for the design and optimization of implantable biomedical devices. In the presented work, a field-effect capacitive sensor has been applied for the real-time and in situ monitoring of degradation processes of biopolymers for the first time. The polymer-covered field-effect sensor is, in principle, capable to detect any changes in bulk, surface and interface properties of the polymer induced by degradation processes. The feasibility of this approach has been experimentally proven by using the commercially available biomedical polymer poly(D,L-lactic acid) (PDLLA) as a model system. PDLLA films of different thicknesses were deposited on the Ta₂O₅-gate surface of the field-effect structure from a polymer solution by means of spin-coating method. The polymer-modified field-effect sensors have been characterized by means of capacitance-voltage and impedance-spectroscopy method. The degradation of the PDLLA was accelerated by changing the degradation medium from neutral (pH 7.2) to alkaline (pH 9) condition, resulting in drastic changes in the capacitance and impedance spectra of the polymer-modified field-effect sensor.}, language = {en} } @article{MiyamotoIchimuraWagneretal.2012, author = {Miyamoto, K. and Ichimura, H. and Wagner, Torsten and Yoshinobu, T. and Sch{\"o}ning, Michael Josef}, title = {Chemical Imaging of ion Diffusion in a Microfluidic Channel}, series = {Procedia Engineering}, journal = {Procedia Engineering}, number = {47}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2012.09.289}, pages = {886 -- 889}, year = {2012}, abstract = {The chemical imaging sensor is a chemical sensor which is capable of visualizing the spatial distribution of chemical species in sample solution. In this study, a novel measurement system based on the chemical imaging sensor was developed to observe the inside of a Y-shaped microfluidic channel while injecting two sample solutions from two branches. From the collected chemical images, it was clearly observed that the injected solutions formed laminar flows in the microfluidic channel. In addition, ion diffusion across the laminar flows was observed. This label-free method can acquire quantitative data of ion distribution and diffusion in microfluidic devices, which can be used to determine the diffusion coefficients, and therefore, the molecular weights of chemical species in the sample solution.}, language = {en} } @article{HuckPoghossianWagneretal.2012, author = {Huck, Christina and Poghossian, Arshak and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Combined amperometric/field-effect sensor for the detection of dissolved hydrogen}, series = {Sensors and actuators B: Chemical}, volume = {187}, journal = {Sensors and actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2012.10.050}, pages = {168 -- 173}, year = {2012}, abstract = {Real-time and reliable monitoring of the biogas process is crucial for a stable and efficient operation of biogas production in order to avoid digester breakdowns. The concentration of dissolved hydrogen (H₂) represents one of the key parameters for biogas process control. In this work, a one-chip integrated combined amperometric/field-effect sensor for monitoring the dissolved H₂ concentration has been developed for biogas applications. The combination of two different transducer principles might allow a more accurate and reliable measurement of dissolved H₂ as an early warning indicator of digester failures. The feasibility of the approach has been demonstrated by simultaneous amperometric/field-effect measurements of dissolved H₂ concentrations in electrolyte solutions. Both, the amperometric and the field-effect transducer show a linear response behaviour in the H₂ concentration range from 0.1 to 3\% (v/v) with a slope of 198.4 ± 13.7 nA/\% (v/v) and 14.9 ± 0.5 mV/\% (v/v), respectively.}, language = {en} } @inproceedings{TakenagaWernerSawadaetal.2012, author = {Takenaga, Shoko and Werner, Frederik and Sawada, Kazuaki and Sch{\"o}ning, Michael Josef}, title = {Comparison of label-free ACh image sensors based on CCD and LAPS}, isbn = {978-3-9813484-2-2}, doi = {10.5162/IMCS2012/4.2.6}, pages = {356 -- 359}, year = {2012}, language = {en} } @incollection{HoffschmidtAlexopoulosRauetal.2012, author = {Hoffschmidt, Bernhard and Alexopoulos, Spiros and Rau, Christoph and Sattler, Johannes, Christoph and Anthrakidis, Anette and Teixeira Boura, Cristiano Jos{\´e} and O'Connor, P. and Hilger, Patrick}, title = {Concentrating solar power}, series = {Comprehensive renewable energy / ed. Ali Sayigh. Vol. 3: Solar thermal systems: components and applications}, volume = {3}, booktitle = {Comprehensive renewable energy / ed. Ali Sayigh. Vol. 3: Solar thermal systems: components and applications}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-08-087872-0}, doi = {10.1016/B978-0-08-087872-0.00319-X}, pages = {595 -- 636}, year = {2012}, language = {en} } @inproceedings{KoetterDeckerDetzleretal.2012, author = {K{\"o}tter, Jens and Decker, Stefan and Detzler, Raphael and Sch{\"a}fer, Jochen and Schmitz, Mark and Herrmann, Ulf}, title = {Cost Reduction of Solar Fields with HelioTrough Collector}, publisher = {FLAGSOL}, address = {K{\"o}ln}, pages = {9 S. : Ill., graph. Darst.}, year = {2012}, language = {en} } @article{LeursMezoOehlschlaegeretal.2012, author = {Leurs, Ulrike and Mezo, Gabor and {\"O}hlschl{\"a}ger, Peter and Orban, Erika and Marquard, Andrea and Manea, Marilena}, title = {Design, synthesis, in vitro stability and cytostatic effect of multifunctional anticancer drug-bioconjugates containing GnRH-III as a targeting moiety}, series = {Peptide Science}, volume = {98}, journal = {Peptide Science}, number = {1}, publisher = {Wiley}, address = {New York, NY}, issn = {1097-0282}, doi = {10.1002/bip.21640}, pages = {1 -- 10}, year = {2012}, abstract = {Bioconjugates containing the GnRH-III hormone decapeptide as a targeting moiety are able to deliver chemotherapeutic agents specifically to cancer cells expressing GnRH receptors, thereby increasing their local efficacy while limiting the peripheral toxicity. However, the number of GnRH receptors on cancer cells is limited and they desensitize under continuous hormone treatment. A possible approach to increase the receptor mediated tumor targeting and consequently the cytostatic effect of the bioconjugates would be the attachment of more than one chemotherapeutic agent to one GnRH-III molecule. Here we report on the design, synthesis and biochemical characterization of multifunctional bioconjugates containing GnRH-III as a targeting moiety and daunorubicin as a chemotherapeutic agent. Two different drug design approaches were pursued. The first one was based on the bifunctional [4Lys]-GnRH-III (Glp-His-Trp-Lys-His-Asp-Trp-Lys-Pro-Gly-NH2) containing two lysine residues in positions 4 and 8, whose ϵ-amino groups were used for the coupling of daunorubicin. In the second drug design, the native GnRH-III (Glp-His-Trp-Ser-His-Asp-Trp-Lys-Pro-Gly-NH2) was used as a scaffold; an additional lysine residue was coupled to the ϵ-amino group of 8Lys in order to generate two free amino groups available for conjugation of daunorubicin. The in vitro stability/degradation of all synthesized compounds was investigated in human serum, as well as in the presence of rat liver lysosomal homogenate. Their cellular uptake was determined on human breast cancer cells and the cytostatic effect was evaluated on human breast, colon and prostate cancer cell lines. Compared with a monofunctional compound, both drug design approaches resulted in multifunctional bioconjugates with increased cytostatic effect.}, language = {en} }