@inproceedings{ElgamalHeuermann2020, author = {Elgamal, Abdelrahman and Heuermann, Holger}, title = {Design and Development of a Hot S-Parameter Measurement System for Plasma and Magnetron Applications}, series = {Proceedings of the 2020 German Microwave Conference}, booktitle = {Proceedings of the 2020 German Microwave Conference}, publisher = {IEEE}, address = {New York, NY}, isbn = {978-3-9820397-1-8}, pages = {124 -- 127}, year = {2020}, abstract = {This paper presents the design, development and calibration procedures of a novel hot S-parameter measurement system for plasma and magnetron applications with power level up to 6 kW. Based on a vector network analyzer, a power amplifier and two directional couplers, the input matching hotS 11 and transmission hotS 21 of the device under test are measured at 2.45 GHz center frequency and 300MHz bandwidth, while the device is driven by the magnetron. This measurement system opens a new horizon to develop many new industrial applications such as microwave plasma jets, dryer systems, dryers and so forth. Furthermore, the developing, controlling and monitoring a 2kW 2.45GHz plasma jet and a dryer system using the measurement system are presented and explained.}, language = {en} } @inproceedings{PaulsenHoffstadtKrafftetal.2020, author = {Paulsen, Svea and Hoffstadt, Kevin and Krafft, Simone and Leite, A. and Zang, J. and Fonseca-Zang, W. and Kuperjans, Isabel}, title = {Continuous biogas production from sugarcane as sole substrate}, series = {Energy Reports}, volume = {6}, booktitle = {Energy Reports}, number = {Supplement 1}, publisher = {Elsevier}, doi = {10.1016/j.egyr.2019.08.035}, pages = {153 -- 158}, year = {2020}, abstract = {A German-Brazilian research project investigates sugarcane as an energy plant in anaerobic digestion for biogas production. The aim of the project is a continuous, efficient, and stable biogas process with sugarcane as the substrate. Tests are carried out in a fermenter with a volume of 10 l. In order to optimize the space-time load to achieve a stable process, a continuous process in laboratory scale has been devised. The daily feed in quantity and the harvest time of the substrate sugarcane has been varied. Analyses of the digester content were conducted twice per week to monitor the process: The ratio of inorganic carbon content to volatile organic acid content (VFA/TAC), the concentration of short-chain fatty acids, the organic dry matter, the pH value, and the total nitrogen, phosphate, and ammonium concentrations were monitored. In addition, the gas quality (the percentages of CO₂, CH₄, and H₂) and the quantity of the produced gas were analyzed. The investigations have exhibited feasible and economical production of biogas in a continuous process with energy cane as substrate. With a daily feeding rate of 1.68gᵥₛ/l*d the average specific gas formation rate was 0.5 m3/kgᵥₛ. The long-term study demonstrates a surprisingly fast metabolism of short-chain fatty acids. This indicates a stable and less susceptible process compared to other substrates.}, language = {en} } @inproceedings{LeiseSimonAltherr2020, author = {Leise, Philipp and Simon, Nicolai and Altherr, Lena}, title = {Comparison of Piecewise Linearization Techniques to Model Electric Motor Efficiency Maps: A Computational Study}, series = {Operations Research Proceedings 2019}, booktitle = {Operations Research Proceedings 2019}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-48439-2}, doi = {10.1007/978-3-030-48439-2_55}, pages = {457 -- 463}, year = {2020}, abstract = {To maximize the travel distances of battery electric vehicles such as cars or buses for a given amount of stored energy, their powertrains are optimized energetically. One key part within optimization models for electric powertrains is the efficiency map of the electric motor. The underlying function is usually highly nonlinear and nonconvex and leads to major challenges within a global optimization process. To enable faster solution times, one possibility is the usage of piecewise linearization techniques to approximate the nonlinear efficiency map with linear constraints. Therefore, we evaluate the influence of different piecewise linearization modeling techniques on the overall solution process and compare the solution time and accuracy for methods with and without explicitly used binary variables.}, language = {en} } @inproceedings{FingerBraunBil2020, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Comparative assessment of parallel-hybrid-electric propulsion systems for four different aircraft}, series = {AIAA Scitech 2020 Forum}, booktitle = {AIAA Scitech 2020 Forum}, doi = {10.2514/6.2020-1502}, pages = {15 Seiten}, year = {2020}, abstract = {As battery technologies advance, electric propulsion concepts are on the edge of disrupting aviation markets. However, until electric energy storage systems are ready to allow fully electric aircraft, the combination of combustion engine and electric motor as a hybrid-electric propulsion system seems to be a promising intermediate solution. Consequently, the design space for future aircraft is expanded considerably, as serial-hybrid-, parallel-hybrid-, fully-electric, and conventional propulsion systems must all be considered. While the best propulsion system depends on a multitude of requirements and considerations, trends can be observed for certain types of aircraft and certain types of missions. This paper provides insight into some factors that drive a new design towards either conventional or hybrid propulsion systems. General aviation aircraft, VTOL air taxis, transport aircraft, and UAVs are chosen as case studies. Typical missions for each class are considered, and the aircraft are analyzed regarding their take-off mass and primary energy consumption. For these case studies, a high-level approach is chosen, using an initial sizing methodology. Results indicate that hybrid-electric propulsion systems should be considered if the propulsion system is sized by short-duration power constraints (e.g. take-off, climb). However, if the propulsion system is sized by a continuous power requirement (e.g. cruise), hybrid-electric systems offer hardly any benefit.}, language = {en} } @inproceedings{SchmidtsKraftWinkensetal.2020, author = {Schmidts, Oliver and Kraft, Bodo and Winkens, Marvin and Z{\"u}ndorf, Albert}, title = {Catalog integration of low-quality product data by attribute label ranking}, series = {Proceedings of the 9th International Conference on Data Science, Technology and Applications DATA - Volume 1}, booktitle = {Proceedings of the 9th International Conference on Data Science, Technology and Applications DATA - Volume 1}, publisher = {SciTePress}, address = {Set{\´u}bal, Portugal}, isbn = {978-989-758-440-4}, doi = {10.5220/0009831000900101}, pages = {90 -- 101}, year = {2020}, abstract = {The integration of product data from heterogeneous sources and manufacturers into a single catalog is often still a laborious, manual task. Especially small- and medium-sized enterprises face the challenge of timely integrating the data their business relies on to have an up-to-date product catalog, due to format specifications, low quality of data and the requirement of expert knowledge. Additionally, modern approaches to simplify catalog integration demand experience in machine learning, word vectorization, or semantic similarity that such enterprises do not have. Furthermore, most approaches struggle with low-quality data. We propose Attribute Label Ranking (ALR), an easy to understand and simple to adapt learning approach. ALR leverages a model trained on real-world integration data to identify the best possible schema mapping of previously unknown, proprietary, tabular format into a standardized catalog schema. Our approach predicts multiple labels for every attribute of an inpu t column. The whole column is taken into consideration to rank among these labels. We evaluate ALR regarding the correctness of predictions and compare the results on real-world data to state-of-the-art approaches. Additionally, we report findings during experiments and limitations of our approach.}, language = {en} } @inproceedings{TomicPennaDeJongetal.2020, author = {Tomic, Igor and Penna, Andrea and DeJong, Matthew and Butenweg, Christoph and Senaldi, Ilaria and Guerrini, Gabriele and Malomo, Daniele and Beyer, Katrin}, title = {Blind predictions of shake table testing of aggregate masonry buildings}, series = {Proceedings of the 17th World Conference on Earthquake Engineering}, booktitle = {Proceedings of the 17th World Conference on Earthquake Engineering}, year = {2020}, abstract = {In many historical centers in Europe, stone masonry is part of building aggregates, which developed when the layout of the city or village was densified. The analysis of such building aggregates is very challenging and modelling guidelines missing. Advances in the development of analysis methods have been impeded by the lack of experimental data on the seismic response of such aggregates. The SERA project AIMS (Seismic Testing of Adjacent Interacting Masonry Structures) provides such experimental data by testing an aggregate of two buildings under two horizontal components of dynamic excitation. With the aim to advance the modelling of unreinforced masonry aggregates, a blind prediction competition is organized before the experimental campaign. Each group has been provided a complete set of construction drawings, material properties, testing sequence and the list of measurements to be reported. The applied modelling approaches span from equivalent frame models to Finite Element models using shell elements and discrete element models with solid elements. This paper compares the first entries, regarding the modelling approaches, results in terms of base shear, roof displacements, interface openings, and the failure modes.}, language = {en} } @inproceedings{FrantzBinderBuschetal.2020, author = {Frantz, Cathy and Binder, Matthias and Busch, Konrad and Ebert, Miriam and Heinrich, Andreas and Kaczmarkiewicz, Nadine and Schl{\"o}gl-Knothe, B{\"a}rbel and Kunze, Tobias and Schuhbauer, Christian and Stetka, Markus and Schwager, Christian and Spiegel, Michael and Teixeira Boura, Cristiano Jos{\´e} and Bauer, Thomas and Bonk, Alexander and Eisen, Stefan and Funck, Bernhard}, title = {Basic Engineering of a High Performance Molten Salt Tower Receiver System}, series = {AIP Conference Proceedings}, booktitle = {AIP Conference Proceedings}, doi = {10.1063/5.0085895}, pages = {1 -- 10}, year = {2020}, abstract = {The production of dispatchable renewable energy will be one of the most important key factors of the future energy supply. Concentrated solar power (CSP) plants operated with molten salt as heat transfer and storage media are one opportunity to meet this challenge. Due to the high concentration factor of the solar tower technology the maximum process temperature can be further increased which ultimately decreases the levelized costs of electricity of the technology (LCOE). The development of an improved tubular molten salt receiver for the next generation of molten salt solar tower plants is the aim of this work. The receiver is designed for a receiver outlet temperature up to 600 °C. Together with a complete molten salt system, the receiver will be integrated into the Multi-Focus-Tower (MFT) in J{\"u}lich (Germany). The paper describes the basic engineering of the receiver, the molten salt tower system and a laboratory corrosion setup.}, language = {en} } @inproceedings{SildatkeKarwanniKraftetal.2020, author = {Sildatke, Michael and Karwanni, Hendrik and Kraft, Bodo and Schmidts, Oliver and Z{\"u}ndorf, Albert}, title = {Automated Software Quality Monitoring in Research Collaboration Projects}, series = {ICSEW'20: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops}, booktitle = {ICSEW'20: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops}, publisher = {IEEE}, address = {New York, NY}, doi = {10.1145/3387940.3391478}, pages = {603 -- 610}, year = {2020}, abstract = {In collaborative research projects, both researchers and practitioners work together solving business-critical challenges. These projects often deal with ETL processes, in which humans extract information from non-machine-readable documents by hand. AI-based machine learning models can help to solve this problem. Since machine learning approaches are not deterministic, their quality of output may decrease over time. This fact leads to an overall quality loss of the application which embeds machine learning models. Hence, the software qualities in development and production may differ. Machine learning models are black boxes. That makes practitioners skeptical and increases the inhibition threshold for early productive use of research prototypes. Continuous monitoring of software quality in production offers an early response capability on quality loss and encourages the use of machine learning approaches. Furthermore, experts have to ensure that they integrate possible new inputs into the model training as quickly as possible. In this paper, we introduce an architecture pattern with a reference implementation that extends the concept of Metrics Driven Research Collaboration with an automated software quality monitoring in productive use and a possibility to auto-generate new test data coming from processed documents in production. Through automated monitoring of the software quality and auto-generated test data, this approach ensures that the software quality meets and keeps requested thresholds in productive use, even during further continuous deployment and changing input data.}, language = {en} } @inproceedings{DuemmlerOetringerGoettsche2020, author = {D{\"u}mmler, Andreas and Oetringer, Kerstin and G{\"o}ttsche, Joachim}, title = {Auslegungstool zur energieeffizienten K{\"u}hlung von Geb{\"a}uden}, series = {DKV-Tagung 2020, AA IV}, booktitle = {DKV-Tagung 2020, AA IV}, pages = {1109}, year = {2020}, abstract = {Thematisch widmet sich das Projekt Coolplan- AIR der Fortentwicklung und Feldvalidierung eines Berechnungs- und Auslegungstools zur energieeffizienten K{\"u}hlung von Geb{\"a}uden mit luftgest{\"u}tzten Systemen. Neben dem Aufbau und der Weiterentwicklung von Simulationsmodellen erfolgen Vermessungen der Gesamtsysteme anhand von Praxisanlagen im Feld. Der Schwerpunkt des Projekts liegt auf der Vermessung, Simulation und Integration rein luftgest{\"u}tzter K{\"u}hltechnologien. Im Bereich der K{\"a}lteerzeugung wurden Luft- Luft- W{\"a}rmepumpen, Anlagen zur adiabaten K{\"u}hlung bzw. offene K{\"u}hlt{\"u}rme und VRF- Multisplit- Systeme (Variable Refrigerant Flow) im Feld bzw. auf dem Teststand der HSD vermessen. Die Komponentenmodelle werden in die Matlab/Simulink- Toolbox CARNOT integriert und anschließend auf Basis der zuvor erhaltenen Messdaten validiert. Einerseits erlauben die Messungen das Betriebsverhalten von Anlagenkomponenten zu analysieren. Andererseits soll mit der Vermessung im Feld gepr{\"u}ft werden, inwieweit die Simulationsmodelle, welche im Vorg{\"a}ngerprojekt aus Pr{\"u}fstandmessungen entwickelt wurden, auch f{\"u}r gr{\"o}ßere Ger{\"a}teleistungen G{\"u}ltigkeit besitzen. Die entwickelten und implementierten Systeme, bestehend aus verschiedensten Anlagenmodellen und Regelungskomponenten, werden gepr{\"u}ft und dahingehend qualifiziert, dass sie in Standard- Auslegungstools zuverl{\"a}ssig verwendet werden k{\"o}nnen. Zus{\"a}tzlich wird ein energetisches Monitoring eines H{\"o}rsaalgeb{\"a}udes am Campus J{\"u}lich durchgef{\"u}hrt, das u. a. zur Validierung der K{\"u}hllastberechnungen in g{\"a}ngigen Simulationsmodelle genutzt werden kann.}, language = {de} } @inproceedings{LorenzAltherrPelz2020, author = {Lorenz, Imke-Sophie and Altherr, Lena and Pelz, Peter F.}, title = {Assessing and Optimizing the Resilience of Water Distribution Systems Using Graph-Theoretical Metrics}, series = {Operations Research Proceedings 2019}, booktitle = {Operations Research Proceedings 2019}, editor = {Neufeld, Janis S. and Buscher, Udo and Lasch, Rainer and M{\"o}st, Dominik and Sch{\"o}nberger, J{\"o}rn}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-48439-2}, doi = {10.1007/978-3-030-48439-2_63}, pages = {521 -- 527}, year = {2020}, abstract = {Water distribution systems are an essential supply infrastructure for cities. Given that climatic and demographic influences will pose further challenges for these infrastructures in the future, the resilience of water supply systems, i.e. their ability to withstand and recover from disruptions, has recently become a subject of research. To assess the resilience of a WDS, different graph-theoretical approaches exist. Next to general metrics characterizing the network topology, also hydraulic and technical restrictions have to be taken into account. In this work, the resilience of an exemplary water distribution network of a major German city is assessed, and a Mixed-Integer Program is presented which allows to assess the impact of capacity adaptations on its resilience.}, language = {en} }